1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Bài 6 trang 98 SGK Toán 11 tập 2 – Chân trời sáng tạo

Bài 6 trang 98 SGK Toán 11 tập 2 – Chân trời sáng tạo

Bài 6 trang 98 SGK Toán 11 Tập 2 – Chân trời sáng tạo

Bài 6 trang 98 SGK Toán 11 Tập 2 thuộc chương trình học Toán 11, tập trung vào việc ôn tập chương 3: Hàm số lượng giác. Bài tập này yêu cầu học sinh vận dụng kiến thức về các hàm số lượng giác cơ bản, tính chất của chúng và các phương pháp giải phương trình lượng giác.

tusach.vn cung cấp lời giải chi tiết, dễ hiểu, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán hiệu quả.

Cho (A) và (B) là hai biến cố thoả mãn

Đề bài

Cho \(A\) và \(B\) là hai biến cố thoả mãn \(P\left( A \right) = 0,5;P\left( B \right) = 0,7\) và \(P\left( {A \cup B} \right) = 0,8\).

a) Tính xác suất của các biến cố \(AB,\bar AB\) và \(\bar A\bar B\).

b) Hai biến cố \(A\) và \(B\) có độc lập hay không?

Phương pháp giải - Xem chi tiếtBài 6 trang 98 SGK Toán 11 tập 2 – Chân trời sáng tạo 1

‒ Sử dụng quy tắc nhân xác suất: Nếu hai biến cố \(A\) và \(B\) độc lập thì \(P\left( {AB} \right) = P\left( A \right)P\left( B \right)\).

‒ Sử dụng quy tắc cộng cho hai biến cố bất kì: Cho hai biến cố \(A\) và \(B\). Khi đó: \(P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {AB} \right)\).

Lời giải chi tiết

a) 

* Tính \(P\left( {AB} \right)\):

Ta có \(P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {AB} \right)\)

\( \Leftrightarrow 0,8 = 0,5 + 0,7 - P\left( {AB} \right)\)

\( \Leftrightarrow P\left( {AB} \right) = 0,4\).

* Tính \(P\left( {\bar AB} \right)\):

Ta có \(B = AB \cup \overline A B\) và \(AB \cap \overline A B = \emptyset \) nên:

\(P\left( B \right) = P\left( {AB} \right) + P\left( {\bar AB} \right)\)

\( \Leftrightarrow P\left( {\bar AB} \right) = P\left( B \right) - P\left( {AB} \right) = 0,7 - 0,4 = 0,3\).

* Tính \(P\left( {\bar A\bar B} \right)\):

Ta có \(A \cup B\) và \(\bar A\bar B\) là hai biến cố đối nên:

\(P\left( {\bar A\bar B} \right) + P\left( {A \cup B} \right) = 1\)

\( \Leftrightarrow P\left( {\bar A\bar B} \right) = 1 - P\left( {A \cup B} \right) = 1 - 0,8 = 0,2\).

b) Ta có \(P\left( {AB} \right) = 0,4\); \(P\left( A \right).P\left( B \right) = 0,5.0,7 = 0,35\).

Vì \(P\left( {AB} \right) \ne P\left( A \right).P\left( B \right)\) nên hai biến cố \(A\) và \(B\) không độc lập.

Bài 6 trang 98 SGK Toán 11 Tập 2 – Chân trời sáng tạo: Giải chi tiết và hướng dẫn

Bài 6 trang 98 SGK Toán 11 Tập 2 – Chân trời sáng tạo là một bài tập quan trọng trong chương trình học Toán 11, giúp học sinh củng cố kiến thức về hàm số lượng giác và phương pháp giải phương trình lượng giác. Dưới đây là lời giải chi tiết và hướng dẫn giải bài tập này:

Nội dung bài tập

Bài 6 yêu cầu giải các phương trình lượng giác sau:

  • a) sin(x) = 1/2
  • b) cos(x) = -√3/2
  • c) tan(x) = 1
  • d) cot(x) = 0

Lời giải chi tiết

a) sin(x) = 1/2

Phương trình sin(x) = 1/2 có nghiệm là:

  • x = π/6 + k2π (k ∈ Z)
  • x = 5π/6 + k2π (k ∈ Z)

b) cos(x) = -√3/2

Phương trình cos(x) = -√3/2 có nghiệm là:

  • x = 5π/6 + k2π (k ∈ Z)
  • x = 7π/6 + k2π (k ∈ Z)

c) tan(x) = 1

Phương trình tan(x) = 1 có nghiệm là:

  • x = π/4 + kπ (k ∈ Z)

d) cot(x) = 0

Phương trình cot(x) = 0 có nghiệm là:

  • x = π/2 + kπ (k ∈ Z)

Hướng dẫn giải bài tập tương tự

Để giải các phương trình lượng giác tương tự, bạn cần:

  1. Xác định giá trị lượng giác đặc biệt của các góc cơ bản (0, π/6, π/4, π/3, π/2, π, 3π/2, 2π).
  2. Sử dụng các công thức lượng giác để biến đổi phương trình về dạng cơ bản.
  3. Tìm nghiệm của phương trình lượng giác cơ bản.
  4. Viết nghiệm tổng quát của phương trình.

Ví dụ minh họa

Giải phương trình sin(2x) = √2/2

Ta có:

  • 2x = π/4 + k2π (k ∈ Z) => x = π/8 + kπ (k ∈ Z)
  • 2x = 3π/4 + k2π (k ∈ Z) => x = 3π/8 + kπ (k ∈ Z)

Lưu ý quan trọng

Khi giải phương trình lượng giác, cần kiểm tra lại nghiệm để đảm bảo chúng không phải là nghiệm ngoại lai. Ngoài ra, cần chú ý đến điều kiện xác định của phương trình.

Tổng kết

Bài 6 trang 98 SGK Toán 11 Tập 2 – Chân trời sáng tạo là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng giải phương trình lượng giác. Việc nắm vững kiến thức về các hàm số lượng giác và các phương pháp giải phương trình là rất cần thiết để giải quyết bài tập này một cách hiệu quả.

tusach.vn hy vọng với lời giải chi tiết và hướng dẫn trên, các bạn học sinh sẽ hiểu rõ hơn về bài tập này và đạt kết quả tốt trong môn Toán.

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN