Bài 6 trang 56 SGK Toán 11 Tập 1 thuộc chương trình học Toán 11 Chân trời sáng tạo, tập trung vào việc luyện tập về phép biến hóa lượng giác. Bài tập này giúp học sinh củng cố kiến thức về các công thức lượng giác cơ bản và ứng dụng chúng vào giải quyết các bài toán thực tế.
tusach.vn cung cấp lời giải chi tiết, dễ hiểu, giúp các em học sinh nắm vững kiến thức và tự tin làm bài tập.
Một người muốn mua một thanh gỗ đủ để cắt ra làm các thanh ngang của một cái thang. Biết rằng chiều dài các thanh ngang của cái thang đó (từ bậc dưới cùng) lần lượt là 45 cm, 43 cm, 41 cm,…, 31 cm.
Đề bài
Một người muốn mua một thanh gỗ đủ để cắt ra làm các thanh ngang của một cái thang. Biết rằng chiều dài các thanh ngang của cái thang đó (từ bậc dưới cùng) lần lượt là 45 cm, 43 cm, 41 cm,…, 31 cm.
a) Cái thang đó có bao nhiêu bậc?
b) Tính chiều dài thanh gỗ mà người đó cần mua, giả sử chiều dài các mối nối (phần gỗ bị cắt thành mùn cưa) là không đáng kể.

Phương pháp giải - Xem chi tiết
‒ Sử dụng công thức số hạng tổng quát của cấp số cộng có số hạng đầu \({u_1}\) và công sai \(d\) thì số hạng tổng quát là: \({u_n} = {u_1} + \left( {n - 1} \right)d,n \ge 2\).
‒ Sử dụng công thức tính tổng \(n\) số hạng đầu tiên của cấp số cộng có số hạng đầu \({u_1}\) và công sai \(d\) là: \({S_n} = \frac{{n\left( {{u_1} + {u_n}} \right)}}{2} = \frac{{n\left[ {2{u_1} + \left( {n - 1} \right)d} \right]}}{2}\).
Lời giải chi tiết
a) Theo đề bài ta có dãy số chỉ chiều dài các thanh ngang của cái thang đó là một cấp số cộng có số hạng đầu \({u_1} = 45\), số hạng cuối \({u_n} = 31\) và công sai \(d = - 2\).
Ta có:
\({u_n} = {u_1} + \left( {n - 1} \right)d \Leftrightarrow 31 = 45 + \left( {n - 1} \right).\left( { - 2} \right) \Leftrightarrow 31 = 45 - 2n + 2 \Leftrightarrow 2n = 16 \Leftrightarrow n = 8\)
Vậy cái thang đó có 8 bậc.
b) Chiều dài thanh gỗ mà người đó cần mua chính là tổng của 8 thanh ngang của cái thang đó.
Vậy chiều dài thanh gỗ mà người đó cần mua là:
\({S_8} = \frac{{8\left( {{u_1} + {u_8}} \right)}}{2} = \frac{{8\left( {45 + 31} \right)}}{2} = 304\left( {cm} \right)\)
Bài 6 trang 56 SGK Toán 11 Tập 1 - Chân trời sáng tạo là một bài tập quan trọng trong chương trình học Toán 11, giúp học sinh rèn luyện kỹ năng áp dụng các công thức lượng giác đã học vào giải quyết các bài toán cụ thể. Dưới đây là lời giải chi tiết và hướng dẫn giải bài tập này:
Bài 6 yêu cầu học sinh thực hiện các phép biến đổi lượng giác để rút gọn biểu thức hoặc chứng minh đẳng thức. Các dạng bài tập thường gặp bao gồm:
Để giải bài 6 trang 56 SGK Toán 11 Tập 1 - Chân trời sáng tạo, các em cần nắm vững các công thức lượng giác sau:
Ví dụ: Giả sử bài tập yêu cầu rút gọn biểu thức A = sin(x + π/3). Ta có thể sử dụng công thức sin(a + b) để biến đổi như sau:
A = sin(x + π/3) = sin(x)cos(π/3) + cos(x)sin(π/3) = sin(x) * (1/2) + cos(x) * (√3/2)
Khi gặp các bài tập tương tự, các em có thể áp dụng các bước sau:
Để giải nhanh các bài tập lượng giác, các em nên:
Để củng cố kiến thức, các em có thể tự giải các bài tập sau:
Bài 6 trang 56 SGK Toán 11 Tập 1 - Chân trời sáng tạo là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng giải toán lượng giác. Bằng cách nắm vững các công thức và luyện tập thường xuyên, các em có thể tự tin giải quyết các bài tập tương tự.
tusach.vn hy vọng với lời giải chi tiết và hướng dẫn trên, các em học sinh sẽ hiểu rõ hơn về bài tập này và đạt kết quả tốt trong học tập.
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập