1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Bài 10 trang 128 SGK Toán 11 tập 1 - Chân trời sáng tạo

Bài 10 trang 128 SGK Toán 11 tập 1 - Chân trời sáng tạo

Bài 10 trang 128 SGK Toán 11 tập 1 - Chân trời sáng tạo

Bài 10 thuộc chương trình Toán 11 tập 1, sách Chân trời sáng tạo, tập trung vào việc ôn tập chương 3: Hàm số lượng giác. Bài tập này yêu cầu học sinh vận dụng kiến thức về các hàm số lượng giác cơ bản, tính chất của chúng và các công thức lượng giác để giải quyết các bài toán cụ thể.

tusach.vn cung cấp lời giải chi tiết, dễ hiểu, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán hiệu quả.

Cho hình chóp \(S.ABCD\) với \(ABCD\) là hình thoi cạnh \(a\), tam giác \(SA{\rm{D}}\) đều. \(M\) là điểm trên cạnh \(AB\), \(\left( \alpha \right)\) là mặt phẳng qua \(M\) và \(\left( \alpha \right)\parallel \left( {SAD} \right)\) cắt \(CD,SC,SB\) lần lượt tại \(N,P,Q\).

Đề bài

Cho hình chóp \(S.ABCD\) với \(ABCD\) là hình thoi cạnh \(a\), tam giác \(SA{\rm{D}}\) đều. \(M\) là điểm trên cạnh \(AB\), \(\left( \alpha \right)\) là mặt phẳng qua \(M\) và \(\left( \alpha \right)\parallel \left( {SAD} \right)\) cắt \(CD,SC,SB\) lần lượt tại \(N,P,Q\).

a) Chứng minh rằng \(MNPQ\) là hình thang cân.

b) Đặt \(AM = x\), tính diện tích \(MNPQ\) theo \(a\) và \(x\).

Phương pháp giải - Xem chi tiếtBài 10 trang 128 SGK Toán 11 tập 1 - Chân trời sáng tạo 1

Sử dụng các định lí:

‒ Nếu ba mặt phẳng đôi một cắt nhau theo ba giao tuyến phân biệt thì ba giao tuyến ấy hoặc đồng quy hoặc đổi một song song.

‒ Cho hai mặt phẳng \(\left( P \right)\) và \(\left( Q \right)\) song song với nhau. Nếu \(\left( R \right)\) cắt \(\left( P \right)\) thì cắt \(\left( Q \right)\) và hai giao tuyến của chúng song song.

Lời giải chi tiết

Bài 10 trang 128 SGK Toán 11 tập 1 - Chân trời sáng tạo 2

a) Ta có:

\(\left. \begin{array}{l}\left( \alpha \right) \cap \left( {SBC} \right) = PQ\\\left( \alpha \right) \cap \left( {ABCD} \right) = MN\\\left( {SBC} \right) \cap \left( {ABCD} \right) = BC\end{array} \right\} \Rightarrow MN\parallel PQ\parallel BC\)

\( \Rightarrow MNPQ\) là hình thang (1).

\(\left. \begin{array}{l}\left( \alpha \right)\parallel \left( {SA{\rm{D}}} \right)\\\left( \alpha \right) \cap \left( {SAB} \right) = MQ\\\left( {SA{\rm{D}}} \right) \cap \left( {SAB} \right) = SA\end{array} \right\} \Rightarrow MQ\parallel SA \Rightarrow \frac{{MQ}}{{SA}} = \frac{{BM}}{{AB}}\)

\(\left. \begin{array}{l}\left( \alpha \right)\parallel \left( {SA{\rm{D}}} \right)\\\left( \alpha \right) \cap \left( {SC{\rm{D}}} \right) = NP\\\left( {SA{\rm{D}}} \right) \cap \left( {SC{\rm{D}}} \right) = SD\end{array} \right\} \Rightarrow NP\parallel SD \Rightarrow \frac{{NP}}{{SD}} = \frac{{CN}}{{C{\rm{D}}}}\)

\(\left. \begin{array}{l}\left( \alpha \right)\parallel \left( {SA{\rm{D}}} \right)\\\left( \alpha \right) \cap \left( {ABC{\rm{D}}} \right) = MN\\\left( {SA{\rm{D}}} \right) \cap \left( {ABC{\rm{D}}} \right) = AD\end{array} \right\} \Rightarrow MN\parallel AD\parallel BC \Rightarrow \frac{{BM}}{{AB}} = \frac{{CN}}{{C{\rm{D}}}}\)

\( \Rightarrow \frac{{MQ}}{{SA}} = \frac{{NP}}{{S{\rm{D}}}}\)

Mà tam giác \(SAD\) đều nên \(SA = S{\rm{D}}\)

\( \Rightarrow MQ = NP\left( 2 \right)\)

Từ (1) và (2) \( \Rightarrow MNPQ\) là hình thang cân.

b) Gọi \(I = MQ \cap NP\). Ta có:

\(\left. \begin{array}{l}\left( {SAB} \right) \cap \left( {SA{\rm{D}}} \right) = SI\\\left( {SAB} \right) \cap \left( {ABCD} \right) = AB\\\left( {SC{\rm{D}}} \right) \cap \left( {ABCD} \right) = C{\rm{D}}\end{array} \right\} \Rightarrow SI\parallel AB\parallel C{\rm{D}}\)

\(SI\parallel N{\rm{D}},S{\rm{D}}\parallel NI \Rightarrow SIN{\rm{D}}\) là hình bình hành \( \Rightarrow S{\rm{D}} = NI\)

\(SI\parallel MA,S{\rm{A}}\parallel MI \Rightarrow SIMA\) là hình bình hành \( \Rightarrow S{\rm{A}} = MI\)

Xét tam giác \(IMN\) và tam giác \(SAD\) có: \(MN\parallel A{\rm{D,}}MI\parallel SA,NI\parallel S{\rm{D}},MN = A{\rm{D}}\)

 tam giác \(IMN\) là tam giác đều cạnh \(a\).

\(\begin{array}{l}SI\parallel AB \Rightarrow \frac{{SI}}{{BM}} = \frac{{IQ}}{{QM}} \Leftrightarrow \frac{{SI}}{{BM + SI}} = \frac{{IQ}}{{QM + IQ}} \Leftrightarrow \frac{{SI}}{{BM + MA}} = \frac{{IQ}}{{QM + IQ}}\\ \Leftrightarrow \frac{{SI}}{{AB}} = \frac{{IQ}}{{MI}} \Leftrightarrow IQ = \frac{{SI.MI}}{{AB}} = \frac{{x.a}}{a} = x\end{array}\)

\({S_{IMN}} = \frac{{{a^2}\sqrt 3 }}{4},{S_{IPQ}} = \frac{{{x^2}\sqrt 3 }}{4} \Rightarrow {S_{MNPQ}} = {S_{IMN}} - {S_{IPQ}} = \frac{{{a^2}\sqrt 3 }}{4} - \frac{{{x^2}\sqrt 3 }}{4} = \frac{{\sqrt 3 }}{4}\left( {{a^2} - {x^2}} \right)\)

Bài 10 trang 128 SGK Toán 11 tập 1 - Chân trời sáng tạo: Giải chi tiết và hướng dẫn

Bài 10 trang 128 SGK Toán 11 tập 1 - Chân trời sáng tạo là một bài tập quan trọng trong chương trình học, giúp học sinh củng cố kiến thức về hàm số lượng giác và ứng dụng của chúng. Dưới đây là giải chi tiết và hướng dẫn giải bài tập này:

Nội dung bài tập

Bài 10 yêu cầu học sinh thực hiện các nhiệm vụ sau:

  • Giải các phương trình lượng giác cơ bản.
  • Tìm tập xác định của hàm số lượng giác.
  • Xác định tính chất của hàm số lượng giác (tăng, giảm, chẵn, lẻ, tuần hoàn).
  • Vẽ đồ thị của hàm số lượng giác.

Giải chi tiết

Để giải bài 10 trang 128 SGK Toán 11 tập 1 - Chân trời sáng tạo, học sinh cần nắm vững các kiến thức sau:

  • Các hàm số lượng giác cơ bản: sin x, cos x, tan x, cot x.
  • Tính chất của các hàm số lượng giác: Tập xác định, tập giá trị, tính tuần hoàn, tính chẵn lẻ.
  • Các công thức lượng giác cơ bản: Công thức cộng, trừ, nhân đôi, chia đôi.
  • Phương pháp giải phương trình lượng giác: Đặt ẩn phụ, sử dụng công thức lượng giác, biến đổi phương trình về dạng cơ bản.

Ví dụ, để giải phương trình sin x = 1/2, ta có thể sử dụng các bước sau:

  1. Tìm các nghiệm của phương trình trên đường tròn lượng giác.
  2. Biểu diễn các nghiệm dưới dạng tổng quát.

Hướng dẫn giải bài tập tương tự

Để rèn luyện kỹ năng giải bài tập về hàm số lượng giác, học sinh có thể thực hiện các bài tập tương tự sau:

  • Giải các phương trình lượng giác khác.
  • Tìm tập xác định của các hàm số lượng giác phức tạp hơn.
  • Xác định tính chất của các hàm số lượng giác mới.
  • Vẽ đồ thị của các hàm số lượng giác khác nhau.

Lưu ý khi giải bài tập

Khi giải bài tập về hàm số lượng giác, học sinh cần lưu ý những điều sau:

  • Đọc kỹ đề bài và xác định yêu cầu của bài tập.
  • Sử dụng đúng các công thức lượng giác và phương pháp giải toán.
  • Kiểm tra lại kết quả để đảm bảo tính chính xác.

Tài liệu tham khảo

Học sinh có thể tham khảo thêm các tài liệu sau để học tốt môn Toán 11:

  • Sách giáo khoa Toán 11 tập 1 - Chân trời sáng tạo.
  • Sách bài tập Toán 11 tập 1 - Chân trời sáng tạo.
  • Các trang web học Toán trực tuyến uy tín.

tusach.vn hy vọng với lời giải chi tiết và hướng dẫn trên, các em học sinh sẽ hiểu rõ hơn về Bài 10 trang 128 SGK Toán 11 tập 1 - Chân trời sáng tạo và có thể tự tin giải các bài tập tương tự. Chúc các em học tốt!

Hàm sốTập xác địnhTập giá trị
sin xR[-1, 1]
cos xR[-1, 1]

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN