Bài 5 trang 85 SGK Toán 11 Tập 2 thuộc chương trình Toán 11 Chân trời sáng tạo, tập trung vào việc ôn tập chương 3: Hàm số lượng giác. Bài tập này yêu cầu học sinh vận dụng kiến thức về các hàm số lượng giác cơ bản, tính chất của chúng và các phương pháp giải phương trình lượng giác.
tusach.vn cung cấp lời giải chi tiết, dễ hiểu, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải bài tập hiệu quả.
Người ta định đào một cái hầm có dạng hình chóp cụt tứ giác đều có hai cạnh đáy là 14 m và 10 m.
Đề bài
Người ta định đào một cái hầm có dạng hình chóp cụt tứ giác đều có hai cạnh đáy là 14 m và 10 m. Mặt bên tạo với đáy nhỏ thành một góc nhị diện có số đo bằng 135°. Tính số mét khối đất cần phải di chuyển ra khỏi hầm.

Phương pháp giải - Xem chi tiết
‒ Cách xác định góc nhị diện \(\left[ {{P_1},d,{Q_1}} \right]\)
Bước 1: Xác định \(c = \left( {{P_1}} \right) \cap \left( {{Q_1}} \right)\).
Bước 2: Tìm mặt phẳng \(\left( R \right) \supset c\).
Bước 3: Tìm \(p = \left( R \right) \cap \left( {{P_1}} \right),q = \left( R \right) \cap \left( {{Q_1}} \right),O = p \cap q,M \in p,N \in q\).
Khi đó \(\left[ {{P_1},d,{Q_1}} \right] = \widehat {MON}\).
‒ Sử dụng công thức tính thể tích khối chóp cụt đều: \(V = \frac{1}{3}h\left( {S + \sqrt {SS'} + S'} \right)\).
Lời giải chi tiết

Mô hình hoá cái hầm bằng cụt chóp tứ giác đều \(ABCD.A'B'C'D'\) với \(O,O'\) là tâm của hai đáy. Vậy \(AB = 14,A'B' = 10\).
Gọi \(M,M'\) lần lượt là trung điểm của \(CD,C'D'\).
\(A'B'C'{\rm{D}}'\) là hình vuông \( \Rightarrow O'M' \bot C'{\rm{D}}'\).
\(CDD'C'\) là hình thang cân \( \Rightarrow MM' \bot C'D'\).
Vậy \(\widehat {MM'O'}\) là góc nhị diện giữa mặt bên và đáy nhỏ.
\( \Rightarrow \widehat {MM'O'} = {135^ \circ } \Rightarrow \widehat {M'MO} = {180^ \circ } - \widehat {MM'O'} = {45^ \circ }\).
Kẻ \(M'H \bot OM\left( {H \in OM} \right)\).
\(OHM'O'\) là hình chữ nhật
\( \Rightarrow OH = O'M' = 5,MH = OM - OH=7-5 = 2,M'H = OO' = MH.\tan {45^ \circ } = 2\).
Diện tích đáy lớn là: \(S = A{B^2} = {14^2} = 196\left( {{m^2}} \right)\).
Diện tích đáy bé là: \(S' = A'B{'^2} = {10^2} = 100\left( {{m^2}} \right)\).
Số mét khối đất cần phải di chuyển ra khỏi hầm là:
\(V = \frac{1}{3}h\left( {S + \sqrt {SS'} + S'} \right) = \frac{1}{3}.2\left( {196 + \sqrt {196.100} + 100} \right) = \frac{{872}}{3} \approx 290,67\left( {{m^3}} \right)\).
Bài 5 trang 85 SGK Toán 11 Tập 2 – Chân trời sáng tạo là một bài tập quan trọng trong chương trình học, giúp học sinh củng cố kiến thức về hàm số lượng giác và phương pháp giải phương trình lượng giác. Dưới đây là lời giải chi tiết và hướng dẫn giải bài tập này:
Bài tập yêu cầu giải các phương trình lượng giác sau:
a) sin(x) = 1/2
Phương trình sin(x) = 1/2 có nghiệm là:
b) cos(x) = -√3/2
Phương trình cos(x) = -√3/2 có nghiệm là:
c) tan(x) = 1
Phương trình tan(x) = 1 có nghiệm là:
d) cot(x) = 0
Phương trình cot(x) = 0 có nghiệm là:
Để giải các phương trình lượng giác tương tự, bạn cần:
Giải phương trình sin(2x) = √2/2
Ta có:
Khi giải phương trình lượng giác, cần kiểm tra lại nghiệm để đảm bảo chúng không phải là nghiệm ngoại lai. Ngoài ra, cần chú ý đến điều kiện xác định của phương trình.
tusach.vn là website cung cấp đầy đủ các tài liệu học tập Toán 11, bao gồm:
Hãy truy cập tusach.vn để học tập và ôn luyện Toán 11 hiệu quả!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập