1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Bài 2 trang 140 SGK Toán 11 tập 1 - Chân trời sáng tạo

Bài 2 trang 140 SGK Toán 11 tập 1 - Chân trời sáng tạo

Bài 2 trang 140 SGK Toán 11 Tập 1 - Chân trời sáng tạo

Bài 2 trang 140 SGK Toán 11 Tập 1 - Chân trời sáng tạo là bài tập thuộc chương trình học Toán 11, tập trung vào việc rèn luyện kỹ năng về đạo hàm và ứng dụng của đạo hàm trong việc giải quyết các bài toán thực tế.

tusach.vn cung cấp lời giải chi tiết, dễ hiểu, giúp học sinh nắm vững kiến thức và tự tin giải các bài tập tương tự.

Số điểm một cầu thủ bóng rổ ghi được trong 20 trận đấu được cho ở bảng sau:

Đề bài

Số điểm một cầu thủ bóng rổ ghi được trong 20 trận đấu được cho ở bảng sau:

Bài 2 trang 140 SGK Toán 11 tập 1 - Chân trời sáng tạo 1

a) Tìm tứ phân vị của dãy số liệu trên.

b) Tổng hợp lại dãy số liệu trên vào bảng tần số ghép nhóm theo mẫu sau:

Bài 2 trang 140 SGK Toán 11 tập 1 - Chân trời sáng tạo 2

c) Hãy ước lượng tứ phân vị của số liệu từ bảng tần số ghép nhóm trên.

Phương pháp giải - Xem chi tiếtBài 2 trang 140 SGK Toán 11 tập 1 - Chân trời sáng tạo 3

a) Sắp xếp dãy số liệu theo thứ tự không giảm và tìm tứ phân vị.

b) Đếm và lập bảng.

c) Sử dụng công thức tính tứ phân vị.

Lời giải chi tiết

a) Sắp xếp lại dãy số liệu theo thứ tự không giảm:

Bài 2 trang 140 SGK Toán 11 tập 1 - Chân trời sáng tạo 4

Tứ phân vị thứ nhất là: \(\frac{1}{2}\left( {{x_5} + {x_6}} \right) = \frac{1}{2}\left( {11 + 11} \right) = 11\)

Tứ phân vị thứ hai là: \(\frac{1}{2}\left( {{x_{10}} + {x_{11}}} \right) = \frac{1}{2}\left( {14 + 14} \right) = 14\)

Tứ phân vị thứ ba là: \(\frac{1}{2}\left( {{x_{15}} + {x_{16}}} \right) = \frac{1}{2}\left( {21 + 22} \right) = 21,5\)

b)

Bài 2 trang 140 SGK Toán 11 tập 1 - Chân trời sáng tạo 5

c) Do số trận đấu là số nguyên nên ta hiệu chỉnh như sau:

Bài 2 trang 140 SGK Toán 11 tập 1 - Chân trời sáng tạo 6

Tổng trận đấu là: \(n = 4 + 8 + 2 + 6 = 20\).

Gọi \({x_1};{x_2};...;{x_{20}}\) là điểm số của các trận đấu được xếp theo thứ tự không giảm.

Ta có:

\({x_1},...,{x_4} \in \begin{array}{*{20}{c}}{\left[ {5,5;10,5} \right)}\end{array};{x_5},...,{x_{12}} \in \begin{array}{*{20}{c}}{\left[ {10,5;15,5} \right)}\end{array};{x_{13}},{x_{14}} \in \begin{array}{*{20}{c}}{\left[ {15,5;20,5} \right)}\end{array};{x_{15}},...,{x_{20}} \in \begin{array}{*{20}{c}}{\left[ {20,5;25,5} \right)}\end{array}\)

• Tứ phân vị thứ hai của dãy số liệu là: \(\frac{1}{2}\left( {{x_{10}} + {x_{11}}} \right)\)

Ta có: \(n = 20;{n_m} = 8;C = 4;{u_m} = 10,5;{u_{m + 1}} = 15,5\)

Do \({x_{10}},{x_{11}} \in \begin{array}{*{20}{c}}{\begin{array}{*{20}{c}}{\left[ {10,5;15,5} \right)}\end{array}}\end{array}\) nên tứ phân vị thứ hai của dãy số liệu là:

\({Q_2} = {u_m} + \frac{{\frac{n}{2} - C}}{{{n_m}}}.\left( {{u_{m + 1}} - {u_m}} \right) = 10,5 + \frac{{\frac{{20}}{2} - 4}}{8}.\left( {15,5 - 10,5} \right) = 14,25\)

• Tứ phân vị thứ nhất của dãy số liệu là: \(\frac{1}{2}\left( {{x_5} + {x_6}} \right)\).

Ta có: \(n = 20;{n_m} = 8;C = 4;{u_m} = 10,5;{u_{m + 1}} = 15,5\)

Do \({x_5},{x_6} \in \begin{array}{*{20}{c}}{\begin{array}{*{20}{c}}{\left[ {10,5;15,5} \right)}\end{array}}\end{array}\) nên tứ phân vị thứ nhất của dãy số liệu là:

\({Q_1} = {u_m} + \frac{{\frac{n}{4} - C}}{{{n_m}}}.\left( {{u_{m + 1}} - {u_m}} \right) = 10,5 + \frac{{\frac{{20}}{4} - 4}}{8}.\left( {15,5 - 10,5} \right) = 11,125\)

• Tứ phân vị thứ ba của dãy số liệu là: \(\frac{1}{2}\left( {{x_{15}} + {x_{16}}} \right)\).

Ta có: \(n = 20;{n_j} = 6;C = 4 + 8 + 2 = 14;{u_j} = 20,5;{u_{j + 1}} = 25,5\)

Do \({x_{15}},{x_{16}} \in \begin{array}{*{20}{c}}{\left[ {20,5;25,5} \right)}\end{array}\) nên tứ phân vị thứ ba của dãy số liệu là:

\({Q_3} = {u_j} + \frac{{\frac{{3n}}{4} - C}}{{{n_j}}}.\left( {{u_{j + 1}} - {u_j}} \right) = 20,5 + \frac{{\frac{{3.20}}{4} - 14}}{6}.\left( {25,5 - 20,5} \right) \approx 21,3\)

Bài 2 trang 140 SGK Toán 11 Tập 1 - Chân trời sáng tạo: Giải chi tiết và hướng dẫn

Bài 2 trang 140 SGK Toán 11 Tập 1 - Chân trời sáng tạo là một bài tập quan trọng trong chương trình học Toán 11, giúp học sinh củng cố kiến thức về đạo hàm và ứng dụng của đạo hàm. Bài tập này thường yêu cầu học sinh tính đạo hàm của hàm số, tìm cực trị của hàm số, hoặc giải các bài toán liên quan đến tối ưu hóa.

Nội dung bài tập

Bài 2 thường có dạng như sau: Cho hàm số f(x) = ... (một hàm số cụ thể). Hãy:

  • Tính đạo hàm f'(x).
  • Tìm các điểm cực trị của hàm số.
  • Xác định khoảng đồng biến, nghịch biến của hàm số.
  • Vẽ đồ thị hàm số.

Phương pháp giải

Để giải bài tập này, học sinh cần nắm vững các kiến thức sau:

  1. Quy tắc tính đạo hàm: Nắm vững các quy tắc tính đạo hàm của các hàm số cơ bản (hàm đa thức, hàm lượng giác, hàm mũ, hàm logarit) và các quy tắc tính đạo hàm của tổng, hiệu, tích, thương của các hàm số.
  2. Điều kiện cực trị: Biết điều kiện cần và đủ để hàm số có cực trị tại một điểm.
  3. Khảo sát hàm số: Biết cách sử dụng đạo hàm để khảo sát hàm số, tìm khoảng đồng biến, nghịch biến, cực trị, và vẽ đồ thị hàm số.

Lời giải chi tiết

Dưới đây là lời giải chi tiết cho Bài 2 trang 140 SGK Toán 11 Tập 1 - Chân trời sáng tạo (ví dụ với một hàm số cụ thể):

Ví dụ: Cho hàm số f(x) = x3 - 3x2 + 2.

  1. Tính đạo hàm: f'(x) = 3x2 - 6x
  2. Tìm điểm cực trị: Giải phương trình f'(x) = 0, ta được x = 0 hoặc x = 2.
  3. Xác định khoảng đồng biến, nghịch biến:
    • Khi x < 0, f'(x) > 0, hàm số đồng biến.
    • Khi 0 < x < 2, f'(x) < 0, hàm số nghịch biến.
    • Khi x > 2, f'(x) > 0, hàm số đồng biến.
  4. Kết luận: Hàm số có cực đại tại x = 0, giá trị cực đại là f(0) = 2. Hàm số có cực tiểu tại x = 2, giá trị cực tiểu là f(2) = -2.

Lưu ý khi giải bài tập

  • Luôn kiểm tra lại kết quả tính đạo hàm.
  • Sử dụng đạo hàm để xác định khoảng đồng biến, nghịch biến một cách chính xác.
  • Vẽ đồ thị hàm số để kiểm tra lại kết quả.

Bài tập tương tự

Để rèn luyện thêm kỹ năng giải bài tập về đạo hàm, học sinh có thể tham khảo các bài tập tương tự trong SGK Toán 11 Tập 1 - Chân trời sáng tạo và các tài liệu tham khảo khác.

Tại sao nên chọn tusach.vn?

tusach.vn cung cấp lời giải chi tiết, dễ hiểu, và cập nhật liên tục các bài tập trong SGK Toán 11 Tập 1 - Chân trời sáng tạo. Chúng tôi cam kết giúp học sinh học tập hiệu quả và đạt kết quả tốt nhất.

Hãy truy cập tusach.vn ngay hôm nay để khám phá thêm nhiều tài liệu học tập hữu ích khác!

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN