Bài 2 trang 97 SGK Toán 11 Tập 2 thuộc chương trình Toán 11 Chân trời sáng tạo, tập trung vào việc vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế. Bài tập này yêu cầu học sinh nắm vững các công thức đạo hàm cơ bản và kỹ năng tính đạo hàm của hàm số.
tusach.vn cung cấp lời giải chi tiết, dễ hiểu, giúp học sinh hiểu rõ phương pháp giải và tự tin làm bài tập.
Trên đường đi từ Hà Nội về thăm Đền Hùng ở Phú Thọ, Binh, Minh và 5 bạn khác ngồi
Đề bài
Trên đường đi từ Hà Nội về thăm Đền Hùng ở Phú Thọ, Bình, Minh và 5 bạn khác ngồi vào 7 chiếc ghế trên một xe ô tô 7 chỗ. Khi xe quay lại Hà Nội, mỗi bạn lại chọn ngồi ngẫu nhiên một ghế. Tính xác suất của biến cố “Có ít nhất một trong hai bạn Bình và Minh vẫn ngồi đúng ghế cũ của mình”.
Phương pháp giải - Xem chi tiết
‒ Sử dụng công thức tính xác suất: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left(\Omega \right)}}\).
‒ Sử dụng quy tắc nhân xác suất: Nếu hai biến cố \(A\) và \(B\) độc lập thì \(P\left( {AB} \right) = P\left( A \right)P\left( B \right)\).
‒ Sử dụng quy tắc cộng cho hai biến cố bất kì: Cho hai biến cố \(A\) và \(B\). Khi đó: \(P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {AB} \right)\).
Lời giải chi tiết
Có \(7! = 5040\) cách sắp xếp 7 bạn ngồi vào 7 chiếc ghế \( \Rightarrow n\left( \Omega \right) = 5040\).
Gọi \(A\) là biến cố: “Bình vẫn ngồi đúng ghế cũ của mình”, \(B\) là biến cố “Minh vẫn ngồi đúng ghế cũ của mình”.
Vậy \(AB\) là biến cố “Cả Bình và Minh vẫn ngồi đúng ghế cũ của mình”;
\(A \cup B\) là biến cố “Có ít nhất một trong hai bạn Bình và Minh vẫn ngồi đúng ghế cũ của mình”.
* Tính P(A):
Xếp chỗ cho Bình ngồi đúng ghế cũ của mình có 1 cách.
Xếp chỗ cho 6 bạn còn lại có \(6! = 720\) cách.
\( \Rightarrow n\left( A \right) = 1.720 = 720\)
\(\Rightarrow P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{720}}{{5040}} = \frac{1}{7}\).
* Tính P(B):
Xếp chỗ cho Minh ngồi đúng ghế cũ của mình có 1 cách.
Xếp chỗ cho 6 bạn còn lại có \(6! = 720\) cách.
\( \Rightarrow n\left( B \right) = 1.720 = 720\)
\(\Rightarrow P\left( B \right) = \frac{{n\left( B \right)}}{{n\left(\Omega \right)}} = \frac{{720}}{{5040}} = \frac{1}{7}\).
* Tính P(AB):
Xếp chỗ cho cả Bình và Minh ngồi đúng ghế cũ của mình có 1 cách.
Xếp chỗ cho 5 bạn còn lại có \(5! = 120\) cách.
\( \Rightarrow n\left( {AB} \right) = 1.120 = 120 \Rightarrow P\left( {AB} \right) = \frac{{n\left( {AB} \right)}}{{n\left( \Omega \right)}} = \frac{{120}}{{5040}} = \frac{1}{{42}}\).
* Tính P(A ∪ B):
\(P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {AB} \right) = \frac{1}{7} + \frac{1}{7} - \frac{1}{{42}} = \frac{{11}}{{42}}\).
Bài 2 trang 97 SGK Toán 11 Tập 2 – Chân trời sáng tạo là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm và ứng dụng của nó trong việc giải quyết các bài toán thực tế. Dưới đây là lời giải chi tiết và hướng dẫn giải bài tập này:
Bài 2 yêu cầu tính đạo hàm của các hàm số sau:
a) y = x3 - 3x2 + 2x - 5
Áp dụng công thức đạo hàm của tổng và hiệu, ta có:
y' = 3x2 - 6x + 2
b) y = (x2 + 1)(x - 2)
Áp dụng công thức đạo hàm của tích, ta có:
y' = (2x)(x - 2) + (x2 + 1)(1) = 2x2 - 4x + x2 + 1 = 3x2 - 4x + 1
c) y = (x2 + 3x + 1) / (x + 1)
Áp dụng công thức đạo hàm của thương, ta có:
y' = [(2x + 3)(x + 1) - (x2 + 3x + 1)(1)] / (x + 1)2 = (2x2 + 5x + 3 - x2 - 3x - 1) / (x + 1)2 = (x2 + 2x + 2) / (x + 1)2
d) y = sin(2x) + cos(x)
Áp dụng công thức đạo hàm của hàm lượng giác, ta có:
y' = 2cos(2x) - sin(x)
Để củng cố kiến thức, bạn có thể làm thêm các bài tập sau:
tusach.vn hy vọng với lời giải chi tiết và hướng dẫn trên, bạn sẽ hiểu rõ hơn về cách giải Bài 2 trang 97 SGK Toán 11 Tập 2 – Chân trời sáng tạo. Chúc bạn học tốt!
| Hàm số | Đạo hàm |
|---|---|
| y = x3 - 3x2 + 2x - 5 | y' = 3x2 - 6x + 2 |
| y = (x2 + 1)(x - 2) | y' = 3x2 - 4x + 1 |
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập