Chào mừng bạn đến với lời giải chi tiết Mục 3 trang 44 SGK Toán 11 tập 2, thuộc bộ sách Chân trời sáng tạo.
Bài viết này sẽ cung cấp đáp án chính xác, phương pháp giải rõ ràng, giúp bạn hiểu sâu sắc kiến thức và tự tin làm bài tập.
tusach.vn luôn đồng hành cùng bạn trên con đường chinh phục môn Toán!
Cho biết \(\mathop {\lim }\limits_{x \to 0} \frac{{\sin x}}{x} = 1\). Dùng định nghĩa tính đạo hàm của hàm số \(y = \sin x\).
Cho biết \(\mathop {\lim }\limits_{x \to 0} \frac{{\sin x}}{x} = 1\). Dùng định nghĩa tính đạo hàm của hàm số \(y = \sin x\).
Phương pháp giải:
Tính giới hạn \(f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}}\).
Lời giải chi tiết:
Với bất kì \({x_0} \in \mathbb{R}\), ta có:
\(f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{\sin x - \sin {x_0}}}{{x - {x_0}}}\)
Đặt \(x = {x_0} + \Delta x\). Ta có:
\(\begin{array}{l}f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{\sin \left( {{x_0} + \Delta x} \right) - \sin {x_0}}}{{\Delta x}} = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{\sin {x_0}\cos \Delta x + \cos {x_0}\sin \Delta x - \sin {x_0}}}{{\Delta x}}\\ = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{\sin {x_0}\cos \Delta x - \sin {x_0}}}{{\Delta x}} + \mathop {\lim }\limits_{\Delta x \to 0} \frac{{\cos {x_0}\sin \Delta x}}{{\Delta x}} = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{\sin {x_0}\left( {\cos \Delta x - 1} \right)}}{{\Delta x}} + \mathop {\lim }\limits_{\Delta x \to 0} \cos {x_0}.\mathop {\lim }\limits_{\Delta x \to 0} \frac{{\sin \Delta x}}{{\Delta x}}\end{array}\)
Lại có:
\(\begin{array}{l}\mathop {\lim }\limits_{\Delta x \to 0} \frac{{\sin {x_0}\left( {\cos \Delta x - 1} \right)}}{{\Delta x}} = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{\sin {x_0}\left( {\cos \Delta x - 1} \right)\left( {\cos \Delta x + 1} \right)}}{{\Delta x\left( {\cos \Delta x + 1} \right)}} = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{\sin {x_0}\left( {{{\cos }^2}\Delta x - 1} \right)}}{{\Delta x\left( {\cos \Delta x + 1} \right)}}\\ = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{\sin {x_0}\left( { - {{\sin }^2}\Delta x} \right)}}{{\Delta x\left( {\cos \Delta x + 1} \right)}} = - \mathop {\lim }\limits_{\Delta x \to 0} \frac{{\sin \Delta x}}{{\Delta x}}.\mathop {\lim }\limits_{\Delta x \to 0} \frac{{\sin {x_0}.\sin \Delta x}}{{\left( {\cos \Delta x + 1} \right)}} = - 1.\frac{{\sin {x_0}.\sin 0}}{{\cos 0 + 1}} = 0\\\mathop {\lim }\limits_{\Delta x \to 0} \cos {x_0}.\mathop {\lim }\limits_{\Delta x \to 0} \frac{{\sin \Delta x}}{{\Delta x}} = \cos {x_0}.1 = \cos {x_0}\end{array}\)
Vậy \(f'\left( {{x_0}} \right) = \cos {x_0}\)
Vậy \(f'\left( x \right) = \cos x\) trên \(\mathbb{R}\).
Tính đạo hàm của hàm số \(y = \tan x\) tại \(x = \frac{{3\pi }}{4}\).
Phương pháp giải:
Sử dụng công thức \({\left( {\tan x} \right)^\prime } = \frac{1}{{{{\cos }^2}x}}\).
Lời giải chi tiết:
Ta có: \(y' = {\left( {\tan x} \right)^\prime } = \frac{1}{{{{\cos }^2}x}}\)
Vậy \(y'\left( {\frac{{3\pi }}{4}} \right) = \frac{1}{{{{\cos }^2}\left( {\frac{{3\pi }}{4}} \right)}} = 2\).
Mục 3 trang 44 SGK Toán 11 tập 2 Chân trời sáng tạo thường xoay quanh các bài toán liên quan đến đạo hàm của hàm số. Cụ thể, các bài tập thường yêu cầu học sinh:
Để giải bài này, ta sử dụng quy tắc tính đạo hàm của tổng, hiệu và tích của các hàm số. Ta có:
f'(x) = 3x2 - 4x + 5
Thay x = 2 vào, ta được:
f'(2) = 3(2)2 - 4(2) + 5 = 12 - 8 + 5 = 9
Vậy, đạo hàm của hàm số tại x = 2 là 9.
Ta sử dụng quy tắc đạo hàm của tích hai hàm số: (uv)' = u'v + uv'.
Đặt u = x2 + 1 và v = x - 3. Khi đó:
u' = 2x và v' = 1
Vậy, y' = 2x(x - 3) + (x2 + 1)(1) = 2x2 - 6x + x2 + 1 = 3x2 - 6x + 1
Để tìm phương trình tiếp tuyến, ta cần xác định hệ số góc k và tọa độ điểm tiếp xúc.
Hệ số góc k là đạo hàm của hàm số tại x = 1. Ta có:
y' = 2x
Thay x = 1 vào, ta được k = 2(1) = 2
Tọa độ điểm tiếp xúc là (1, y(1)) = (1, 12) = (1, 1)
Phương trình tiếp tuyến có dạng: y - y0 = k(x - x0)
Thay k = 2 và (x0, y0) = (1, 1) vào, ta được:
y - 1 = 2(x - 1) => y = 2x - 1
tusach.vn tự hào là một trong những nguồn tài liệu toán học uy tín, cung cấp lời giải chi tiết, dễ hiểu cho các bài tập SGK Toán 11 tập 2 Chân trời sáng tạo và các bộ sách khác. Chúng tôi luôn cập nhật nội dung mới nhất, đảm bảo cung cấp cho bạn những thông tin chính xác và hữu ích nhất.
Hãy truy cập tusach.vn để khám phá thêm nhiều tài liệu học tập hữu ích khác!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập