Chào mừng bạn đến với tusach.vn! Chúng tôi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập trong SGK Toán 11 tập 2 Chân trời sáng tạo. Mục 3 trang 30, 31 tập trung vào các kiến thức quan trọng về...
Xét quần thể vi khuẩn ở Hoạt động 1.
Xét quần thể vi khuẩn ở Hoạt động 1.
a) Ở những thời điểm nào thì số lượng cá thể vi khuẩn vượt quá 50000?
b) Ở những thời điểm nào thì số lượng cá thể vi khuẩn vượt quá 50000 nhưng chưa vượt quá 100000?
Phương pháp giải:
Xét tính đồng biến, nghịch biến của hàm số \(P\left( t \right)\).
Lời giải chi tiết:
Do \(10 > 1\) nên hàm số \(P\left( t \right) = {50.10^{kt}}\) đồng biến trên \(\mathbb{R}\).
a) Tại thời điểm \(t = 10\) thì số lượng cá thể vi khuẩn bằng 50000.
Vì hàm số đồng biến trên \(\mathbb{R}\) nên với \(t > 10\) thì số lượng cá thể vi khuẩn vượt quá 50000.
b) Thời gian để số lượng cá thể vi khuẩn đạt đến 100000 là:
\(100000 = {50.10^{0,3t}} \Leftrightarrow {10^{0,3t}} = 2000 \Leftrightarrow 0,3t = \log 2000 \Leftrightarrow t \approx 11\) (giờ)
Tại thời điểm \(t = 10\) thì số lượng cá thể vi khuẩn bằng 50000.
Tại thời điểm \(t = 11\) thì số lượng cá thể vi khuẩn bằng 100000.
Vì hàm số đồng biến trên \(\mathbb{R}\) nên với \(10 < t < 11\) thì số lượng cá thể vi khuẩn vượt quá 50000 nhưng chưa vượt quá 100000.
Giải các bất phương trình sau:
a) \({2^x} > 16\);
b) \(0,{1^x} \le 0,001\);
c) \({\left( {\frac{1}{5}} \right)^{x - 2}} \ge {\left( {\frac{1}{{25}}} \right)^x}\).
Phương pháp giải:
Đưa 2 vế của bất phương trình về cùng cơ số.
Lời giải chi tiết:
a) \({2^x} > 16 \Leftrightarrow {2^x} > {2^4} \Leftrightarrow x > 4\) (do \(2 > 1\)) .
b) \(0,{1^x} \le 0,001 \Leftrightarrow 0,{1^x} \le 0,{1^3} \Leftrightarrow x \ge 3\) (do \(0 < 0,1 < 1\)).
c) \({\left( {\frac{1}{5}} \right)^{x - 2}} \ge {\left( {\frac{1}{{25}}} \right)^x} \Leftrightarrow {\left( {\frac{1}{5}} \right)^{x - 2}} \ge {\left( {{{\left( {\frac{1}{5}} \right)}^2}} \right)^x} \Leftrightarrow {\left( {\frac{1}{5}} \right)^{x - 2}} \ge {\left( {\frac{1}{5}} \right)^{2x}} \Leftrightarrow x - 2 \le 2{\rm{x}}\) (do \(0 < \frac{1}{5} < 1\))
\( \Leftrightarrow x \ge - 2\).
Mục 3 trang 30, 31 SGK Toán 11 tập 2 Chân trời sáng tạo là một phần quan trọng trong chương trình học, tập trung vào việc vận dụng các kiến thức về đạo hàm để giải quyết các bài toán thực tế. Việc nắm vững nội dung này không chỉ giúp học sinh đạt kết quả tốt trong các bài kiểm tra mà còn là nền tảng vững chắc cho việc học tập các môn học liên quan sau này.
Mục 3 thường bao gồm các dạng bài tập sau:
Dưới đây là hướng dẫn giải chi tiết một số bài tập tiêu biểu trong Mục 3 trang 30, 31:
Giải:
Sử dụng quy tắc đạo hàm của hàm hợp, ta có:
y' = cos(2x) * 2 = 2cos(2x)
Giải:
Tính đạo hàm bậc nhất: y' = 3x2 - 6x
Giải phương trình y' = 0 để tìm các điểm cực trị: 3x2 - 6x = 0 => x = 0 hoặc x = 2
Tính đạo hàm bậc hai: y'' = 6x - 6
Tại x = 0, y'' = -6 < 0 => Hàm số đạt cực đại tại x = 0, ymax = 2
Tại x = 2, y'' = 6 > 0 => Hàm số đạt cực tiểu tại x = 2, ymin = -2
Để giải các bài tập trong Mục 3 trang 30, 31 một cách nhanh chóng và hiệu quả, bạn nên:
tusach.vn là một website uy tín và chất lượng, cung cấp đầy đủ các tài liệu học tập Toán 11, bao gồm:
Hãy truy cập tusach.vn ngay hôm nay để học Toán 11 hiệu quả và đạt kết quả cao!
| Chương | Nội dung chính |
|---|---|
| 1 | Đạo hàm |
| 2 | Ứng dụng đạo hàm |
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập