Chào mừng bạn đến với lời giải chi tiết Mục 2 trang 43 SGK Toán 11 tập 2, chương trình Chân trời sáng tạo. Bài viết này sẽ cung cấp đáp án chính xác, phương pháp giải rõ ràng, giúp bạn hiểu sâu sắc kiến thức và tự tin làm bài tập.
tusach.vn luôn đồng hành cùng bạn trên con đường chinh phục môn Toán.
Dùng định nghĩa, tính đạo hàm của hàm số (y = sqrt x ) tại điểm (x = {x_0}) với ({x_0} > 0).
Dùng định nghĩa, tính đạo hàm của hàm số \(y = \sqrt x \) tại điểm \(x = {x_0}\) với \({x_0} > 0\).
Phương pháp giải:
Tính giới hạn \(f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}}\).
Lời giải chi tiết:
Với bất kì \({x_0} > 0\), ta có:
\(\begin{array}{l}f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{\sqrt x - \sqrt {{x_0}} }}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{\left( {\sqrt x - \sqrt {{x_0}} } \right)\left( {\sqrt x + \sqrt {{x_0}} } \right)}}{{\left( {x - {x_0}} \right)\left( {\sqrt x + \sqrt {{x_0}} } \right)}}\\ = \mathop {\lim }\limits_{x \to {x_0}} \frac{{x - {x_0}}}{{\left( {x - {x_0}} \right)\left( {\sqrt x + \sqrt {{x_0}} } \right)}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{1}{{\sqrt x + \sqrt {{x_0}} }} = \frac{1}{{\sqrt {{x_0}} + \sqrt {{x_0}} }} = \frac{1}{{2\sqrt {{x_0}} }}\end{array}\)
Vậy \(f'\left( x \right) = {\left( {\sqrt x } \right)^\prime } = \frac{1}{{2\sqrt x }}\) trên \(\left( {0; + \infty } \right)\).
Viết phương trình tiếp tuyến của đồ thị hàm số \(y = \sqrt x \) tại điểm có hoành độ bằng 4.
Phương pháp giải:
Hệ số góc: \(f'\left( {{x_0}} \right)\).
Phương trình tiếp tuyến: \(y - f\left( {{x_0}} \right) = f'\left( {{x_0}} \right)\left( {x - {x_0}} \right)\).
Lời giải chi tiết:
\({y_0} = \sqrt 4 = 2\)
Ta có: \({\left( {\sqrt x } \right)^\prime } = \frac{1}{{2\sqrt x }}\) nên tiếp tuyến của \(\left( C \right)\) tại điểm \(M\left( {4;2} \right)\) có hệ số góc là: \(f'\left( 4 \right) = \frac{1}{{2\sqrt 4 }} = \frac{1}{4}\)
Phương trình tiếp tuyến của \(\left( C \right)\) tại điểm \(M\) là:
\(y - 2 = \frac{1}{4}\left( {x - 4} \right) \Leftrightarrow y = \frac{1}{4}x - 1 + 2 \Leftrightarrow y = \frac{1}{4}x + 1\).
Tìm đạo hàm của các hàm số:
a) \(y = \sqrt[4]{x}\) tại \(x = 1\);
b) \(y = \frac{1}{x}\) tại \(x = - \frac{1}{4}\);
Phương pháp giải:
a) Sử dụng công thức \({\left( {{x^\alpha }} \right)^\prime } = \alpha {x^{\alpha - 1}}\left( {x > 0} \right)\).
b) Sử dụng công thức \({\left( {\frac{1}{x}} \right)^\prime } = - \frac{1}{{{x^2}}}\left( {x \ne 0} \right)\).
Lời giải chi tiết:
a) \(y' = {\left( {\sqrt[4]{x}} \right)^\prime } = {\left( {{x^{\frac{1}{4}}}} \right)^\prime } = \frac{1}{4}{x^{\frac{1}{4} - 1}} = \frac{1}{4}{x^{ - \frac{3}{4}}} = \frac{1}{{4\sqrt[4]{{{x^3}}}}}\)
\(y'\left( 1 \right) = \frac{1}{{4\sqrt[4]{{{1^3}}}}} = \frac{1}{4}\).
b) \(y' = {\left( {\frac{1}{x}} \right)^\prime } = - \frac{1}{{{x^2}}}\)
\(y'\left( { - \frac{1}{4}} \right) = - \frac{1}{{{{\left( { - \frac{1}{4}} \right)}^2}}} = - 16\).
Mục 2 trang 43 SGK Toán 11 tập 2 Chân trời sáng tạo thường xoay quanh các bài toán liên quan đến phép biến hình, đặc biệt là phép tịnh tiến, phép quay, và phép đối xứng. Việc nắm vững lý thuyết và phương pháp giải là yếu tố then chốt để giải quyết các bài tập này một cách hiệu quả.
Trước khi đi vào giải bài tập cụ thể, chúng ta cần ôn lại một số kiến thức lý thuyết quan trọng:
Dưới đây là giải chi tiết các bài tập trong Mục 2 trang 43 SGK Toán 11 tập 2 Chân trời sáng tạo. (Lưu ý: Nội dung giải bài tập sẽ được trình bày cụ thể cho từng bài, ví dụ: Bài 1, Bài 2,...)
Cho điểm A(1; 2) và vector t = (3; -1). Tìm tọa độ điểm A' là ảnh của A qua phép tịnh tiến theo vector t.
Giải:
Tọa độ điểm A' được tính theo công thức: x' = x + tx; y' = y + ty
Thay số: x' = 1 + 3 = 4; y' = 2 + (-1) = 1
Vậy A'(4; 1).
Cho điểm B(-2; 3) và đường thẳng d: x + y - 1 = 0. Tìm tọa độ điểm B' là ảnh của B qua phép đối xứng qua đường thẳng d.
Giải:
(Giải thích chi tiết các bước thực hiện phép đối xứng qua đường thẳng)
Để giải các bài tập về phép biến hình một cách nhanh chóng và chính xác, bạn có thể áp dụng một số mẹo sau:
Để củng cố kiến thức và rèn luyện kỹ năng giải bài tập, bạn có thể tham khảo thêm các bài tập tương tự trong SGK và các tài liệu tham khảo khác.
Bảng tổng hợp các công thức quan trọng:
| Phép biến hình | Công thức |
|---|---|
| Tịnh tiến | x' = x + tx; y' = y + ty |
| Quay | (Công thức quay quanh gốc tọa độ) |
| Đối xứng qua điểm I | x' = 2xi - x; y' = 2yi - y |
Hy vọng với hướng dẫn chi tiết này, bạn sẽ tự tin giải quyết các bài tập trong Mục 2 trang 43 SGK Toán 11 tập 2 Chân trời sáng tạo. Chúc bạn học tốt!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập