1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Bài 9 trang 98 SGK Toán 11 tập 2 – Chân trời sáng tạo

Bài 9 trang 98 SGK Toán 11 tập 2 – Chân trời sáng tạo

Bài 9 trang 98 SGK Toán 11 Tập 2 – Chân trời sáng tạo

Bài 9 trang 98 SGK Toán 11 Tập 2 thuộc chương trình Toán 11 Chân trời sáng tạo, tập trung vào việc ôn tập chương 3: Cấp số cho và cấp số nhân. Bài tập này yêu cầu học sinh vận dụng kiến thức đã học để giải các bài toán thực tế liên quan đến cấp số.

tusach.vn cung cấp lời giải chi tiết, dễ hiểu, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán hiệu quả.

Một hộp có 5 quả bóng xanh, 6 quả bóng đỏ và 4 quả bóng vàng

Đề bài

Một hộp có 5 quả bóng xanh, 6 quả bóng đỏ và 4 quả bóng vàng có kích thước và khối lượng như nhau. Chọn ra ngẫu nhiên từ hộp 4 quả bóng. Tính xác suất của các biến cố:

\(A\): “Cả 4 quả bóng lấy ra có cùng màu”;

\(B\): “Trong 4 bóng lấy ra có đủ cả 3 màu”.

Phương pháp giải - Xem chi tiếtBài 9 trang 98 SGK Toán 11 tập 2 – Chân trời sáng tạo 1

‒ Sử dụng công thức tính xác suất: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}}\).

‒ Sử dụng quy tắc cộng xác suất cho hai biến cố xung khắc: Cho hai biến cố \(A\) và \(B\) xung khắc. Khi đó: \(P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right)\).

Lời giải chi tiết

Chọn ngẫu nhiên từ hộp 4 quả bóng trong tổng số 15 quả bóng có \({C}_{15}^4 = 1365\) cách.

\( \Rightarrow n\left( \Omega \right) = 1365\)

Gọi \({A_1}\) là biến cố “Cả 4 quả bóng lấy ra đều có cùng màu xanh”, \({A_2}\) là biến cố “Cả 4 quả bóng lấy ra đều có cùng màu đỏ”, \({A_3}\) là biến cố “Cả 4 quả bóng lấy ra đều có cùng màu vàng”.

Vậy \(A = {A_1} \cup {A_2} \cup {A_3}\) là biến cố “Cả 4 quả bóng lấy ra có cùng màu”.

Chọn ngẫu nhiên từ hộp 4 quả bóng trong tổng số 5 quả bóng xanh có \({C}_5^4 = 5\) cách.

\( \Rightarrow n\left( {{A_1}} \right) = 5 \Rightarrow P\left( {{A_1}} \right) = \frac{{n\left( {{A_1}} \right)}}{{n\left( \Omega \right)}} = \frac{5}{{1365}} = \frac{1}{{273}}\)

Chọn ngẫu nhiên từ hộp 4 quả bóng trong tổng số 6 quả bóng đỏ có \({C}_6^4 = 15\) cách.

\( \Rightarrow n\left( {{A_2}} \right) = 15 \Rightarrow P\left( {{A_2}} \right) = \frac{{n\left( {{A_2}} \right)}}{{n\left( \Omega \right)}} = \frac{{15}}{{1365}} = \frac{1}{{91}}\)

Chọn ngẫu nhiên từ hộp 4 quả bóng trong tổng số 4 quả bóng vàng có \({C}_4^4 = 1\) cách.

\( \Rightarrow n\left( {{A_3}} \right) = 1 \Rightarrow P\left( {{A_3}} \right) = \frac{{n\left( {{A_3}} \right)}}{{n\left( \Omega\right)}} = \frac{1}{{1365}}\)

\( \Rightarrow P\left( A \right) = P\left( {{A_1}} \right) + P\left( {{A_2}} \right) + P\left( {{A_3}} \right) = \frac{1}{{65}}\)

Gọi \({B_1}\) là biến cố “Lấy ra 2 bóng xanh, 1 bóng đỏ, 1 bóng vàng”, \({B_2}\) là biến cố “Lấy ra 1 bóng xanh, 2 bóng đỏ, 1 bóng vàng”, \({B_3}\) là biến cố “Lấy ra 1 bóng xanh, 1 bóng đỏ, 2 bóng vàng”.

Vậy \(B = {B_1} \cup {B_2} \cup {B_3}\) là biến cố “Trong 4 bóng lấy ra có đủ cả 3 màu”.

Chọn ngẫu nhiên từ hộp 2 quả bóng trong tổng số 5 quả bóng xanh có \({C}_5^2 = 10\) cách.

Chọn ngẫu nhiên từ hộp 1 quả bóng trong tổng số 6 quả bóng đỏ có 6 cách.

Chọn ngẫu nhiên từ hộp 1 quả bóng trong tổng số 4 quả bóng vàng có 4 cách.

\( \Rightarrow n\left( {{B_1}} \right) = 10.6.4 = 240 \Rightarrow P\left( {{B_1}} \right) = \frac{{n\left( {{B_1}} \right)}}{{n\left( \Omega \right)}} = \frac{{240}}{{1365}} = \frac{{16}}{{91}}\)

Chọn ngẫu nhiên từ hộp 1 quả bóng trong tổng số 5 quả bóng xanh có 5 cách.

Chọn ngẫu nhiên từ hộp 2 quả bóng trong tổng số 6 quả bóng đỏ có \({C}_6^2 = 15\) cách.

Chọn ngẫu nhiên từ hộp 1 quả bóng trong tổng số 4 quả bóng vàng có 4 cách.

\( \Rightarrow n\left( {{B_2}} \right) = 5.15.4 = 300 \Rightarrow P\left( {{B_2}} \right) = \frac{{n\left( {{B_2}} \right)}}{{n\left( \Omega \right)}} = \frac{{300}}{{1365}} = \frac{{20}}{{91}}\)

Chọn ngẫu nhiên từ hộp 1 quả bóng trong tổng số 5 quả bóng xanh có 5 cách.

Chọn ngẫu nhiên từ hộp 1 quả bóng trong tổng số 6 quả bóng đỏ có 6 cách.

Chọn ngẫu nhiên từ hộp 2 quả bóng trong tổng số 4 quả bóng vàng có \({C}_4^2 = 6\) cách.

\( \Rightarrow n\left( {{B_3}} \right) = 5.6.6 = 180 \Rightarrow P\left( {{B_3}} \right) = \frac{{n\left( {{B_3}} \right)}}{{n\left( \Omega \right)}} = \frac{{180}}{{1365}} = \frac{{12}}{{91}}\)

\( \Rightarrow P\left( B \right) = P\left( {{B_1}} \right) + P\left( {{B_2}} \right) + P\left( {{B_3}} \right) = \frac{{48}}{{91}}\)

Bài 9 trang 98 SGK Toán 11 Tập 2 – Chân trời sáng tạo: Giải chi tiết và hướng dẫn

Bài 9 trang 98 SGK Toán 11 Tập 2 – Chân trời sáng tạo là một bài tập quan trọng trong chương trình học, giúp học sinh củng cố kiến thức về cấp số cho và cấp số nhân. Dưới đây là lời giải chi tiết và hướng dẫn giải bài tập này:

Nội dung bài tập

Bài 9 yêu cầu giải quyết một tình huống thực tế liên quan đến việc tính toán số tiền tiết kiệm theo thời gian, sử dụng kiến thức về cấp số nhân. Cụ thể, bài toán thường mô tả một người tiết kiệm một số tiền nhất định mỗi tháng và nhận lãi suất cố định. Học sinh cần tính tổng số tiền tiết kiệm được sau một khoảng thời gian nhất định.

Lời giải chi tiết

Để giải bài tập này, chúng ta cần xác định được các yếu tố của cấp số nhân: số hạng đầu (u1), công bội (q) và số số hạng (n). Sau đó, áp dụng công thức tính tổng của cấp số nhân:

Sn = u1 * (qn - 1) / (q - 1)

Trong đó:

  • Sn là tổng của n số hạng đầu tiên của cấp số nhân.
  • u1 là số hạng đầu tiên.
  • q là công bội.
  • n là số số hạng.

Ví dụ, giả sử một người tiết kiệm 500.000 đồng mỗi tháng với lãi suất 0.5% mỗi tháng. Sau 12 tháng, tổng số tiền tiết kiệm được là:

u1 = 500.000

q = 1 + 0.005 = 1.005

n = 12

S12 = 500.000 * (1.00512 - 1) / (1.005 - 1) ≈ 6.358.750 đồng

Mẹo giải bài tập

Để giải bài tập về cấp số cho và cấp số nhân một cách hiệu quả, bạn nên:

  1. Đọc kỹ đề bài và xác định rõ các yếu tố của cấp số.
  2. Chọn công thức phù hợp để giải bài toán.
  3. Kiểm tra lại kết quả để đảm bảo tính chính xác.

Bài tập tương tự

Để rèn luyện kỹ năng giải bài tập về cấp số cho và cấp số nhân, bạn có thể tham khảo các bài tập tương tự sau:

  • Bài 10 trang 98 SGK Toán 11 Tập 2 – Chân trời sáng tạo
  • Bài tập ôn tập chương 3 SGK Toán 11 Tập 2 – Chân trời sáng tạo

Kết luận

Bài 9 trang 98 SGK Toán 11 Tập 2 – Chân trời sáng tạo là một bài tập quan trọng giúp học sinh củng cố kiến thức về cấp số cho và cấp số nhân. Bằng cách nắm vững kiến thức và rèn luyện kỹ năng giải bài tập, bạn có thể tự tin giải quyết các bài toán tương tự trong các kỳ thi và trong thực tế.

tusach.vn luôn đồng hành cùng bạn trên con đường chinh phục môn Toán. Hãy truy cập website của chúng tôi để xem thêm nhiều bài giải và tài liệu học tập hữu ích khác!

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN