1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Bài 5 trang 81 SGK Toán 11 tập 2 – Chân trời sáng tạo

Bài 5 trang 81 SGK Toán 11 tập 2 – Chân trời sáng tạo

Bài 5 trang 81 SGK Toán 11 Tập 2 – Chân trời sáng tạo

Bài 5 trang 81 SGK Toán 11 Tập 2 thuộc chương trình Toán 11 Chân trời sáng tạo, tập trung vào việc ôn tập chương 3: Hàm số lượng giác. Bài tập này yêu cầu học sinh vận dụng kiến thức về hàm số lượng giác, các phép biến đổi lượng giác và giải phương trình lượng giác để giải quyết các bài toán cụ thể.

tusach.vn cung cấp lời giải chi tiết, dễ hiểu, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán hiệu quả.

Một cây cầu dành cho người đi bộ (Hình 22) có mặt sàn cầu cách mặt đường 3,5 m

Đề bài

Một cây cầu dành cho người đi bộ (Hình 22) có mặt sàn cầu cách mặt đường 3,5 m, khoảng cách từ đường thẳng \(a\) nằm trên tay vịn của cầu đến mặt sàn cầu là 0,8 m. Gọi \(b\) là đường thẳng kẻ theo tim đường. Tính khoảng cách giữa hai đường thẳng \(a\) và \(b\).

Bài 5 trang 81 SGK Toán 11 tập 2 – Chân trời sáng tạo 1

Phương pháp giải - Xem chi tiếtBài 5 trang 81 SGK Toán 11 tập 2 – Chân trời sáng tạo 2

Cách tính khoảng cách giữa hai đường thẳng chéo nhau:

Cách 1: Dựng đường vuông góc chung.

Cách 2: Tính khoảng cách từ đường thẳng này đến một mặt phẳng song song với đường thẳng đó và chứa đường thẳng còn lại.

Lời giải chi tiết

Vì tay vịn cầu song song với mặt đường nên khoảng cách giữa hai đường thẳng \(a\) và \(b\) chính bằng khoảng cách từ đường thẳng \(a\) xuống mặt đường.

Khoảng cách giữa hai đường thẳng \(a\) và \(b\) bằng: \(3,5 + 0,8 = 4,3\left( m \right)\).

Bài 5 trang 81 SGK Toán 11 Tập 2 – Chân trời sáng tạo: Giải chi tiết và hướng dẫn

Bài 5 trang 81 SGK Toán 11 Tập 2 – Chân trời sáng tạo là một bài tập quan trọng trong chương trình học, giúp học sinh củng cố kiến thức về hàm số lượng giác và các ứng dụng của nó. Dưới đây là lời giải chi tiết và hướng dẫn giải bài tập này:

Nội dung bài tập

Bài tập yêu cầu giải các phương trình lượng giác sau:

  1. sin(x) = 1/2
  2. cos(x) = -√3/2
  3. tan(x) = 1
  4. cot(x) = 0

Lời giải chi tiết

Để giải các phương trình lượng giác này, chúng ta cần sử dụng kiến thức về giá trị lượng giác của các góc đặc biệt và các công thức lượng giác cơ bản.

Giải phương trình sin(x) = 1/2

Phương trình sin(x) = 1/2 có nghiệm là:

  • x = π/6 + k2π (k ∈ Z)
  • x = 5π/6 + k2π (k ∈ Z)
Giải phương trình cos(x) = -√3/2

Phương trình cos(x) = -√3/2 có nghiệm là:

  • x = 5π/6 + k2π (k ∈ Z)
  • x = 7π/6 + k2π (k ∈ Z)
Giải phương trình tan(x) = 1

Phương trình tan(x) = 1 có nghiệm là:

  • x = π/4 + kπ (k ∈ Z)
Giải phương trình cot(x) = 0

Phương trình cot(x) = 0 có nghiệm là:

  • x = π/2 + kπ (k ∈ Z)

Lưu ý quan trọng

Khi giải phương trình lượng giác, cần chú ý đến điều kiện xác định của hàm số lượng giác và kiểm tra lại nghiệm để đảm bảo tính chính xác.

Bài tập tương tự

Để rèn luyện kỹ năng giải phương trình lượng giác, bạn có thể tham khảo các bài tập tương tự sau:

  • Giải phương trình sin(2x) = √2/2
  • Giải phương trình cos(x/2) = 0
  • Giải phương trình tan(3x) = -1

Kết luận

Bài 5 trang 81 SGK Toán 11 Tập 2 – Chân trời sáng tạo là một bài tập quan trọng giúp học sinh củng cố kiến thức về hàm số lượng giác và rèn luyện kỹ năng giải phương trình lượng giác. Hy vọng với lời giải chi tiết và hướng dẫn trên, các bạn học sinh có thể tự tin giải quyết bài tập này và đạt kết quả tốt trong môn Toán.

Nguồn: tusach.vn - Giải bài tập Toán 11 nhanh chóng và chính xác.

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN