1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Bài 10 trang 86 SGK Toán 11 tập 1 - Chân trời sáng tạo

Bài 10 trang 86 SGK Toán 11 tập 1 - Chân trời sáng tạo

Bài 10 trang 86 SGK Toán 11 Tập 1 - Chân trời sáng tạo

Bài 10 trang 86 SGK Toán 11 Tập 1 thuộc chương trình học Toán 11 Chân trời sáng tạo, tập trung vào việc ôn tập chương 1: Hàm số và đồ thị. Bài tập này yêu cầu học sinh vận dụng kiến thức đã học để giải quyết các bài toán liên quan đến hàm số bậc hai, điều kiện xác định và tập giá trị của hàm số.

tusach.vn cung cấp lời giải chi tiết, dễ hiểu, giúp học sinh nắm vững kiến thức và tự tin làm bài tập.

Tìm các giới hạn sau:

Đề bài

Tìm các giới hạn sau:

a) \(\mathop {\lim }\limits_{x \to {4^ + }} \frac{1}{{x - 4}}\);

b) \(\mathop {\lim }\limits_{x \to {2^ +}} \frac{x}{{2 - x}}\).

Phương pháp giải - Xem chi tiếtBài 10 trang 86 SGK Toán 11 tập 1 - Chân trời sáng tạo 1

Bước 1: Đưa hàm số \(f\left( x \right)\) về tích của hai hàm số, trong đó một hàm số có giới hạn hữu hạn, còn một hàm số có giới hạn vô cực.

Bước 2: Áp dụng quy tắc xét dấu để tính giới hạn của tích.

Lời giải chi tiết

a) Áp dụng giới hạn một bên thường dùng, ta có : \(\mathop {\lim }\limits_{x \to {4^ + }} \frac{1}{{x - 4}} = + \infty \)

b) \(\mathop {\lim }\limits_{x \to {2^ + }} \frac{x}{{2 - x}} = \mathop {\lim }\limits_{x \to {2^+ }} \frac{{ - x}}{{x - 2}} = \mathop {\lim }\limits_{x \to {2^ + }} \left( { - x} \right).\mathop {\lim }\limits_{x \to {2^ + }} \frac{1}{{x - 2}}\)

Ta có: \(\mathop {\lim }\limits_{x \to {2^ + }} \left( { - x} \right) = - \mathop {\lim }\limits_{x \to {2^ + }} x = - 2;\mathop {\lim }\limits_{x \to {2^ +}} \frac{1}{{x - 2}} = +\infty \)

\( \Rightarrow \mathop {\lim }\limits_{x \to {2^ - }} \frac{x}{{2 - x}} = - \infty \)

Bài 10 trang 86 SGK Toán 11 Tập 1 - Chân trời sáng tạo: Giải chi tiết và hướng dẫn

Bài 10 trang 86 SGK Toán 11 Tập 1 - Chân trời sáng tạo là một bài tập quan trọng trong chương trình học Toán 11, giúp học sinh củng cố kiến thức về hàm số và đồ thị. Dưới đây là lời giải chi tiết và hướng dẫn giải bài tập này:

Nội dung bài tập

Bài 10 yêu cầu học sinh xác định tập xác định và tập giá trị của các hàm số sau:

  • a) y = √(2x - 1)
  • b) y = 1 / (x + 2)
  • c) y = x² - 4x + 3

Lời giải chi tiết

a) y = √(2x - 1)

Để hàm số y = √(2x - 1) xác định, biểu thức dưới dấu căn phải lớn hơn hoặc bằng 0:

2x - 1 ≥ 0

⇔ 2x ≥ 1

⇔ x ≥ 1/2

Vậy tập xác định của hàm số là D = [1/2; +∞).

Vì √(2x - 1) ≥ 0 với mọi x ≥ 1/2, nên tập giá trị của hàm số là [0; +∞).

b) y = 1 / (x + 2)

Để hàm số y = 1 / (x + 2) xác định, mẫu số phải khác 0:

x + 2 ≠ 0

⇔ x ≠ -2

Vậy tập xác định của hàm số là D = R \ {-2}.

Hàm số y = 1 / (x + 2) có thể nhận mọi giá trị khác 0. Do đó, tập giá trị của hàm số là R \ {0}.

c) y = x² - 4x + 3

Hàm số y = x² - 4x + 3 là một hàm số bậc hai. Tập xác định của hàm số bậc hai là tập số thực R.

Để tìm tập giá trị, ta hoàn thiện bình phương:

y = x² - 4x + 4 - 1

y = (x - 2)² - 1

Vì (x - 2)² ≥ 0 với mọi x, nên y ≥ -1.

Vậy tập giá trị của hàm số là [ -1; +∞).

Lưu ý quan trọng

Khi giải các bài tập về tập xác định và tập giá trị của hàm số, cần chú ý đến các điều kiện sau:

  • Biểu thức dưới dấu căn phải lớn hơn hoặc bằng 0.
  • Mẫu số phải khác 0.
  • Đối với hàm số lượng giác, cần xét điều kiện của góc.

Bài tập tương tự

Để luyện tập thêm, các em có thể giải các bài tập tương tự trong SGK Toán 11 Tập 1 - Chân trời sáng tạo hoặc các đề thi thử Toán 11.

Kết luận

Bài 10 trang 86 SGK Toán 11 Tập 1 - Chân trời sáng tạo là một bài tập cơ bản nhưng quan trọng, giúp học sinh hiểu rõ hơn về tập xác định và tập giá trị của hàm số. Việc nắm vững kiến thức này sẽ giúp các em giải quyết các bài toán phức tạp hơn trong tương lai.

Chúc các em học tốt!

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN