1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Lý thuyết Giới hạn của hàm số - SGK Toán 11 Chân trời sáng tạo

Lý thuyết Giới hạn của hàm số - SGK Toán 11 Chân trời sáng tạo

Lý thuyết Giới hạn của hàm số - Nền tảng Toán 11

Chào mừng bạn đến với bài học về Lý thuyết Giới hạn của hàm số, một trong những chủ đề quan trọng nhất trong chương trình Toán 11 Chân trời sáng tạo.

Bài viết này sẽ cung cấp cho bạn kiến thức cơ bản, các định nghĩa, tính chất và ứng dụng của giới hạn hàm số một cách dễ hiểu nhất.

Chúng tôi sẽ đi sâu vào các ví dụ minh họa và bài tập thực hành để giúp bạn nắm vững kiến thức và tự tin giải quyết các bài toán liên quan.

1. Giới hạn hữu hạn của hàm số tại một điểm

1. Giới hạn hữu hạn của hàm số tại một điểm

Cho khoảng K chứa điểm \({x_0}\)và hàm số \(y = f(x)\) xác định trên K hoặc trên \(K\backslash \left\{ {{x_0}} \right\}\). Ta nói hàm số \(y = f(x)\) có giới hạn hữu hạn là số L khi \(x\) dần tới \({x_0}\) nếu với dãy số \(\left( {{x_n}} \right)\) bất kì, \({x_n} \in K\backslash \left\{ {{x_0}} \right\}\) và \({x_n} \to {x_0}\), ta có\(f({x_n}) \to L\)

Kí hiệu \(\mathop {\lim }\limits_{x \to {x_0}} f(x) = L\) hay \(f(x) \to L\), khi \({x_n} \to {x_0}\).

2. Các phép toán về giới hạn hữu hạn của hàm số

a, Nếu \(\mathop {\lim }\limits_{x \to {x_0}} f(x) = L\) và \(\mathop {\lim }\limits_{x \to {x_0}} g(x) = M\) thì

\(\mathop {\lim }\limits_{x \to {x_0}} \left[ {f(x) \pm g(x)} \right] = L \pm M\)

\(\mathop {\lim }\limits_{x \to {x_0}} \left[ {f(x).g(x)} \right] = L.M\)

\(\mathop {\lim }\limits_{x \to {x_0}} \left[ {\frac{{f(x)}}{{g(x)}}} \right] = \frac{L}{M}\left( {M \ne 0} \right)\)

b, Nếu \(f(x) \ge 0\) với mọi \(x \in \left( {a;b} \right)\backslash \left\{ {{x_0}} \right\}\) và \(\mathop {\lim }\limits_{x \to {x_0}} f(x) = L\) thì \(L \ge 0\)và \(\mathop {\lim }\limits_{x \to {x_0}} \sqrt {f(x)} = \sqrt L \).

* Nhận xét:

\(\begin{array}{l}a,\mathop {\lim }\limits_{x \to {x_0}} {x^k} = {x_0}^k,k \in {\mathbb{Z}^ + }.\\b,\mathop {\lim }\limits_{x \to {x_0}} \left[ {c.f(x)} \right] = c.\mathop {\lim }\limits_{x \to {x_0}} f(x)\end{array}\)

(\(c \in \mathbb{R}\), nếu tồn tại \(\mathop {\lim }\limits_{x \to {x_0}} f(x) \in \mathbb{R}\))

3. Giới hạn một phía

Cho hàm số \(y = f(x)\) xác định trên khoảng \(\left( {{x_0};b} \right)\).

Ta nói \(y = f(x)\) có giới hạn bên phải là số L khi \(x \to {x_0}\) nếu với dãy số \(\left( {{x_n}} \right)\) bất kì,\({x_0} < {x_n} < b\) và \({x_n} \to {x_0}\)ta có \(f({x_n}) \to L\), kí hiệu \(\mathop {\lim }\limits_{x \to {x_0}^ + } f(x) = L\).

Cho hàm số \(y = f(x)\) xác định trên khoảng \(\left( {a;{x_0}} \right)\).

Ta nói \(y = f(x)\)có giới hạn bên phải là số L khi \(x \to {x_0}\) nếu với dãy số \(\left( {{x_n}} \right)\)bất kì,\(a < {x_n} < {x_0}\) và \({x_n} \to {x_0}\)ta có \(f({x_n}) \to L\), kí hiệu \(\mathop {\lim }\limits_{x \to {x_0}^ - } f(x) = L\).

*Chú ý:

  • \(\mathop {\lim }\limits_{x \to {x_0}} f(x) = L \Leftrightarrow \mathop {\lim }\limits_{x \to {x_0}^ - } f(x) = \mathop {\lim }\limits_{x \to {x_0}^ + } f(x) = L\)
  • \(\mathop {\lim }\limits_{x \to {x_0}^ - } f(x) \ne \mathop {\lim }\limits_{x \to {x_0}^ + } f(x)\) thì không tồn tại \(\mathop {\lim }\limits_{x \to {x_0}} f(x)\).
  • Các phép toán về giới hạn hữu hạn của hàm số ở Mục 2 vẫn đúng khi ta thay \(x \to {x_0}\)bằng \(x \to {x_0}^ + \)hoặc \(x \to {x_0}^ - \).

4. Giới hạn hữu hạn của hàm số tại vô cực

Cho hàm số \(y = f(x)\) xác định trên khoảng \(\left( {a; + \infty } \right)\). Ta nói hàm số \(f(x)\)có giới hạn là số L khi \(x \to + \infty \) nếu với dãy số \(\left( {{x_n}} \right)\) bất kì \({x_n} > a\) và \({x_n} \to + \infty \)ta có \(f({x_n}) \to L\), kí hiệu \(\mathop {\lim }\limits_{x \to + \infty } f(x) = L\) hay \(f(x) \to L\) khi \(x \to + \infty \).

Cho hàm số \(y = f(x)\) xác định trên khoảng \(\left( { - \infty ;a} \right)\). Ta nói hàm số \(f(x)\) có giới hạn là số L khi \(x \to - \infty \) nếu với dãy số \(\left( {{x_n}} \right)\) bất kì \({x_n} < a\) và \({x_n} \to - \infty \)ta có \(f({x_n}) \to L\), kí hiệu \(\mathop {\lim }\limits_{x \to - \infty } f(x) = L\) hay \(f(x) \to L\) khi \(x \to - \infty \).

* Nhận xét:

  • Các quy tắc tính giới hạn hữu hạn tại một điểm cũng đúng cho giới hạn hữu hạn tại vô cực.
  • Với c là hằng số, k là một số nguyên dương ta có:

\(\mathop {\lim }\limits_{x \to \pm \infty } c = c,\)\(\mathop {\lim }\limits_{x \to \pm \infty } (\frac{c}{{{x^k}}}) = 0\)

5. Giới hạn vô cực của hàm số tại một điểm

- Cho hàm số \(y = f(x)\)xác định trên khoảng \(\left( {{x_0};b} \right)\).

Ta nói hàm số \(f(x)\) có giới hạn bên phải là \( + \infty \) khi \(x \to {x_0}\) về bên phải nếu với dãy số \(\left( {{x_n}} \right)\) bất kì thỏa mãn \({x_0} < {x_n} < b\) và \({x_n} \to {x_0}\) ta có \(f({x_n}) \to + \infty \), kí hiệu \(\mathop {\lim }\limits_{x \to {x_0}^ + } f(x) = + \infty \)

Ta nói hàm số \(f(x)\) ó giới hạn bên phải là \( - \infty \) khi \(x \to {x_0}\) về bên trái nếu với dãy số \(\left( {{x_n}} \right)\) bất kì thỏa mãn \(a < {x_n} < {x_0}\) và \({x_n} \to {x_0}\) ta có \(f({x_n}) \to + \infty \), kí hiệu \(\mathop {\lim }\limits_{x \to {x_0}^ - } f(x) = + \infty \)

Các giới hạn một bên\(\mathop {\lim }\limits_{x \to {x_0}^ + } f(x) = - \infty \), \(\mathop {\lim }\limits_{x \to {x_0}^ - } f(x) = - \infty \) được định nghĩa tương tự.

* Chú ý:

  • \(\mathop {\lim }\limits_{x \to + \infty } {x^k} = + \infty ,k \in {\mathbb{Z}^ + }.\)
  • \(\mathop {\lim }\limits_{x \to - \infty } {x^k} = + \infty ,\) k là số nguyên dương chẵn.
  • \(\mathop {\lim }\limits_{x \to - \infty } {x^k} = - \infty ,\) k là số nguyên dương lẻ.
  • \(\mathop {\lim }\limits_{x \to {a^ + }} \frac{1}{{x - a}} = + \infty ,\mathop {\lim }\limits_{x \to {a^ - }} \frac{1}{{x - a}} = - \infty \left( {a \in \mathbb{R}} \right)\)
  • Giới hạn vô cực

Nếu \(\mathop {\lim }\limits_{x \to {x_0}^ + } f(x) = L \ne 0\) và \(\mathop {\lim }\limits_{x \to {x_0}^ + } g(x) = + \infty \)hoặc \(\mathop {\lim }\limits_{x \to {x_0}^ + } g(x) = - \infty \)thì \(\mathop {\lim }\limits_{x \to {x_0}^ + } \left[ {f(x).g(x)} \right]\) được tính như sau:

Lý thuyết Giới hạn của hàm số - SGK Toán 11 Chân trời sáng tạo 1

Các quy tắc trên vẫn đúng khi thay \({x_0}^ + \)thành \({x_0}^ - \)(hoặc \( + \infty \),\( - \infty \))

Lý thuyết Giới hạn của hàm số - SGK Toán 11 Chân trời sáng tạo 2

Lý Thuyết Giới Hạn của Hàm Số - SGK Toán 11 Chân Trời Sáng Tạo: Tổng Quan Chi Tiết

Giới hạn của hàm số là một khái niệm nền tảng trong giải tích, đóng vai trò quan trọng trong việc xây dựng các khái niệm như đạo hàm, tích phân và các ứng dụng của chúng. Trong chương trình Toán 11 Chân trời sáng tạo, việc nắm vững lý thuyết giới hạn hàm số là điều kiện cần thiết để tiếp thu các kiến thức nâng cao hơn.

1. Định Nghĩa Giới Hạn của Hàm Số

Giới hạn của hàm số f(x) khi x tiến tới a được ký hiệu là limx→a f(x) = L, nếu với mọi số dương ε (epsilon) nhỏ tùy ý, tồn tại một số dương δ (delta) sao cho nếu 0 < |x - a| < δ thì |f(x) - L| < ε. Nói một cách đơn giản, khi x tiến gần đến a, giá trị của f(x) tiến gần đến L.

2. Các Loại Giới Hạn

  • Giới hạn hữu hạn: limx→a f(x) = L (L là một số thực).
  • Giới hạn vô cực: limx→a f(x) = +∞ hoặc limx→a f(x) = -∞.
  • Giới hạn ở vô cực: limx→+∞ f(x) = L hoặc limx→-∞ f(x) = L.

3. Các Tính Chất của Giới Hạn

  1. limx→a [f(x) + g(x)] = limx→a f(x) + limx→a g(x)
  2. limx→a [f(x) - g(x)] = limx→a f(x) - limx→a g(x)
  3. limx→a [f(x) * g(x)] = limx→a f(x) * limx→a g(x)
  4. limx→a [f(x) / g(x)] = limx→a f(x) / limx→a g(x) (với limx→a g(x) ≠ 0)

4. Các Dạng Giới Hạn Cơ Bản và Phương Pháp Tính Toán

Có nhiều dạng giới hạn cơ bản thường gặp, ví dụ:

  • limx→a c = c (c là hằng số)
  • limx→a x = a
  • limx→a xn = an (n là số nguyên dương)

Để tính giới hạn, ta thường sử dụng các phương pháp sau:

  • Phương pháp trực tiếp: Thay trực tiếp giá trị x = a vào hàm số.
  • Phương pháp phân tích thành nhân tử: Biến đổi biểu thức để khử dạng vô định.
  • Phương pháp nhân liên hợp: Sử dụng công thức liên hợp để khử dạng vô định.
  • Quy tắc L'Hôpital: Áp dụng quy tắc L'Hôpital khi gặp dạng vô định 0/0 hoặc ∞/∞.

5. Ví Dụ Minh Họa

Ví dụ 1: Tính limx→2 (x2 - 4) / (x - 2)

Giải: Ta có (x2 - 4) / (x - 2) = (x - 2)(x + 2) / (x - 2) = x + 2 (với x ≠ 2). Do đó, limx→2 (x2 - 4) / (x - 2) = limx→2 (x + 2) = 4.

Ví dụ 2: Tính limx→∞ (2x + 1) / (x - 3)

Giải: Chia cả tử và mẫu cho x, ta được limx→∞ (2 + 1/x) / (1 - 3/x) = (2 + 0) / (1 - 0) = 2.

6. Bài Tập Vận Dụng

Hãy tự giải các bài tập sau để củng cố kiến thức:

  • Tính limx→1 (x3 - 1) / (x - 1)
  • Tính limx→0 sin(x) / x
  • Tính limx→+∞ (1 + 1/x)x

Lý thuyết Giới hạn của hàm số là một công cụ mạnh mẽ trong toán học. Việc nắm vững lý thuyết này sẽ giúp bạn giải quyết nhiều bài toán phức tạp và hiểu sâu hơn về các khái niệm toán học khác. Chúc bạn học tập tốt!

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN