Bài 1 trang 56 SGK Toán 11 tập 2 thuộc chương trình Toán 11 Chân trời sáng tạo, tập trung vào việc ôn tập chương 3: Hàm số lượng giác. Bài tập này yêu cầu học sinh vận dụng kiến thức về hàm số lượng giác, đồ thị hàm số lượng giác và các phép biến đổi lượng giác để giải quyết các bài toán cụ thể.
tusach.vn cung cấp lời giải chi tiết, dễ hiểu và đáp án chính xác cho Bài 1 trang 56, giúp học sinh hiểu rõ bản chất bài toán và rèn luyện kỹ năng giải toán.
Cho hình chóp (S.ABCD) có đáy là hình thoi (ABCD) cạnh (a). Cho biết (SA = asqrt 3 ,SA bot AB) và (SA bot A{rm{D}}).
Đề bài
Cho hình chóp \(S.ABCD\) có đáy là hình thoi \(ABCD\) cạnh \(a\). Cho biết \(SA = a\sqrt 3 ,SA \bot AB\) và \(SA \bot A{\rm{D}}\). Tính góc giữa \(SB\) và \(C{\rm{D}}\), \(S{\rm{D}}\) và \(C{\rm{B}}\).
Phương pháp giải - Xem chi tiết
Cách xác định góc giữa hai đường thẳng \(a\) và \(b\):
Bước 1: Lấy một điểm \(O\) bất kì.
Bước 2: Qua điểm \(O\) dựng đường thẳng \(a'\parallel a\) và đường thẳng \(b'\parallel b\).
Bước 3: Tính \(\left( {a,b} \right) = \left( {a',b'} \right)\).
Lời giải chi tiết

a) Ta có: \(C{\rm{D}}\parallel AB \Rightarrow \left( {SB,C{\rm{D}}} \right) = \left( {SB,AB} \right) = \widehat {SBA}\).
\(\tan \widehat {SBA} = \frac{{SA}}{{AB}} = \frac{{a\sqrt 3 }}{a} = \sqrt 3 \Rightarrow \widehat {SBA} = {60^ \circ }\)
Vậy \(\left( {SB,C{\rm{D}}} \right) = {60^ \circ }\).
a) Ta có: \(C{\rm{B}}\parallel AD \Rightarrow \left( {SD,C{\rm{B}}} \right) = \left( {SD,AD} \right) = \widehat {S{\rm{D}}A}\).
\(\tan \widehat {SDA} = \frac{{SA}}{{AD}} = \frac{{a\sqrt 3 }}{a} = \sqrt 3 \Rightarrow \widehat {SDA} = {60^ \circ }\)
Vậy \(\left( {SD,C{\rm{B}}} \right) = {60^ \circ }\).
Bài 1 trang 56 SGK Toán 11 tập 2 Chân trời sáng tạo là một bài tập quan trọng trong chương trình học, giúp học sinh củng cố kiến thức về hàm số lượng giác đã được học. Dưới đây là lời giải chi tiết và hướng dẫn giải bài tập này:
Bài 1 yêu cầu học sinh thực hiện các nhiệm vụ sau:
Để giải bài 1 trang 56, học sinh cần nắm vững các kiến thức sau:
Ví dụ, xét hàm số y = sin(x).
Để giải các bài tập tương tự, học sinh có thể áp dụng các bước sau:
Ngoài việc giải bài tập, học sinh nên tìm hiểu thêm về các ứng dụng của hàm số lượng giác trong thực tế, chẳng hạn như trong vật lý, kỹ thuật, và khoa học máy tính.
Khi giải bài tập về hàm số lượng giác, học sinh cần chú ý đến đơn vị đo góc (độ hoặc radian) và sử dụng máy tính bỏ túi để tính toán các giá trị lượng giác một cách chính xác.
| Công thức | Mô tả |
|---|---|
| sin2(x) + cos2(x) = 1 | Công thức lượng giác cơ bản |
| tan(x) = sin(x) / cos(x) | Công thức tính tan(x) |
| cot(x) = cos(x) / sin(x) | Công thức tính cot(x) |
Hy vọng với lời giải chi tiết và hướng dẫn trên, các em học sinh sẽ hiểu rõ hơn về Bài 1 trang 56 SGK Toán 11 tập 2 Chân trời sáng tạo và có thể tự tin giải các bài tập tương tự. Đừng quên truy cập tusach.vn để xem thêm nhiều tài liệu học tập hữu ích khác!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập