Chào mừng các em học sinh đến với lời giải chi tiết mục 2 trang 95, 96, 97 SGK Toán 11 tập 2, chương trình Chân trời sáng tạo. Tusach.vn luôn đồng hành cùng các em trong quá trình học tập, cung cấp đáp án chính xác và dễ hiểu nhất.
Mục tiêu của chúng tôi là giúp các em hiểu sâu sắc kiến thức, rèn luyện kỹ năng giải bài tập và tự tin hơn trong các kỳ thi.
Cho hai biến cố xung khắc \(A\) và \(B\).
Cho hai biến cố xung khắc \(A\) và \(B\). Có 5 kết quả thuận lợi cho biến cố \(A\) và 12 kết quả thuận lợi cho biến cố \(B\). Hãy so sánh \(P\left( {A \cup B} \right)\) với \(P\left( A \right) + P\left( B \right)\).
Phương pháp giải:
Sử dụng công thức tính xác suất: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega\right)}}\).
Lời giải chi tiết:
Số kết quả thuận lợi cho biến cố \(A \cup B\) là \(5 + 12 = 17\).
\(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{5}{{n\left( \Omega \right)}};P\left( B \right) = \frac{{n\left( B \right)}}{{n\left( \Omega\right)}} = \frac{{12}}{{n\left( \Omega\right)}};P\left( {A \cup B} \right) = \frac{{n\left( {A \cup B} \right)}}{{n\left( \Omega\right)}} = \frac{{17}}{{n\left( \Omega\right)}}\)
\( \Rightarrow P\left( A \right) + P\left( B \right) = P\left( {A \cup B} \right)\)
Hãy trả lời câu hỏi ở Hoạt động mở đầu.
Phương pháp giải:
Sử dụng quy tắc cộng xác suất cho hai biến cố xung khắc: Cho hai biến cố \(A\) và \(B\) xung khắc. Khi đó: \(P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right)\).
Lời giải chi tiết:
Gọi \(A\) là biến cố “Hạt giống thứ nhất nảy mầm”, \(B\) là biến cố “Hạt giống thứ hai nảy mầm”.
\(P\left( A \right) = P\left( B \right) = 0,8 \Rightarrow P\left( {\bar A} \right) = P\left( {\bar B} \right) = 1 - 0,8 = 0,2\)
Xác suất để có đúng 1 trong 2 hạt giống đó nảy mầm là:
\(P\left( {A\bar B} \right) + P\left( {\bar AB} \right) = P\left( A \right).P\left( {\bar B} \right) + P\left( {\bar A} \right).P\left( B \right) = 0,8.0,2 + 0,2.0,8 = 0,32\)
Rút ngẫu nhiên 1 lá bài từ bộ bài tây 52 lá. Tính xác suất của biến cố “Lá bài được chọn có màu đỏ hoặc là lá có số chia hết cho 5”.
Phương pháp giải:
Sử dụng công thức tính xác suất: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}}\).
Lời giải chi tiết:
Gọi \(A\) là biến cố “Lá bài được chọn có màu đỏ hoặc là lá có số chia hết cho 5”
Rút ngẫu nhiên 1 lá bài từ bộ bài tây 52 lá có 52 cách \( \Rightarrow n\left( \Omega \right) = 52\)
Số lá bài có màu đỏ hoặc có số chia hết cho 5 là 30 lá \( \Rightarrow n\left( A \right) = 30\)
\( \Rightarrow P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega\right)}} = \frac{{30}}{{52}} = \frac{{15}}{{26}}\)
Cho hai biến cố \(A\) và \(B\) độc lập với nhau. Biết \(P\left( A \right) = 0,9\) và \(P\left( B \right) = 0,6\). Hãy tính xác suất của biến cố \(A \cup B\).
Phương pháp giải:
‒ Sử dụng quy tắc nhân xác suất: Nếu hai biến cố \(A\) và \(B\) độc lập thì \(P\left( {AB} \right) = P\left( A \right)P\left( B \right)\).
‒ Sử dụng quy tắc cộng cho hai biến cố bất kì: Cho hai biến cố \(A\) và \(B\). Khi đó: \(P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {AB} \right)\).
Lời giải chi tiết:
Vì hai biến cố \(A\) và \(B\) độc lập với nhau nên \(P\left( {AB} \right) = P\left( A \right).P\left( B \right) = 0,9.0,6 = 0,54\).
Vậy \(P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {AB} \right) = 0,9 + 0,6 - 0,54 = 0,96\).
Khảo sát một trường trung học phổ thông, người ta thấy có 20% học sinh thuận tay trái và 35% học sinh bị cận thị. Giả sử đặc điểm thuận tay nào không ảnh hưởng đến việc học sinh có bị cận thị hay không. Gặp ngẫu nhiên một học sinh của trường. Tính xác suất của biến cố học sinh đó bị cận thị hoặc thuận tay trái.
Phương pháp giải:
‒ Sử dụng quy tắc nhân xác suất: Nếu hai biến cố \(A\) và \(B\) độc lập thì \(P\left( {AB} \right) = P\left( A \right)P\left( B \right)\).
‒ Sử dụng quy tắc cộng cho hai biến cố bất kì: Cho hai biến cố \(A\) và \(B\). Khi đó: \(P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {AB} \right)\).
Lời giải chi tiết:
Gọi \(A\) là biến cố “Học sinh thuận tay trái”, \(B\) là biến cố “Học sinh bị cận thị”.
Vậy \(A \cup B\) là biến cố “Học sinh bị cận thị hoặc thuận tay trái”
Ta có: \(P\left( A \right) = 0,2;P\left( B \right) = 0,35\).
Vì đặc điểm thuận tay nào không ảnh hưởng đến việc học sinh có bị cận thị hay không nên \(A\) và \(B\) độc lập với nhau. Do đó \(P\left( {AB} \right) = P\left( A \right).P\left( B \right) = 0,2.0,35 = 0,07\).
Vậy xác suất của biến cố học sinh đó bị cận thị hoặc thuận tay trái là:
\(P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {AB} \right) = 0,2 + 0,35 - 0,07 = 0,48\).
Mục 2 của SGK Toán 11 tập 2 chương trình Chân trời sáng tạo thường tập trung vào một chủ đề cụ thể trong chương trình học. Để giải quyết hiệu quả các bài tập trong mục này, học sinh cần nắm vững lý thuyết, công thức và phương pháp giải liên quan. Tusach.vn sẽ cung cấp một hướng dẫn chi tiết, từng bước giải các bài tập từ trang 95 đến 97, giúp các em hiểu rõ cách tiếp cận và áp dụng kiến thức vào thực tế.
Để hiểu rõ hơn về nội dung cần giải, chúng ta cần xác định chính xác chủ đề mà Mục 2 đề cập đến. Thông thường, đây có thể là:
Dưới đây là hướng dẫn giải chi tiết từng bài tập trong Mục 2, trang 95, 96, 97 SGK Toán 11 tập 2 Chân trời sáng tạo:
Đề bài: (Giả sử đề bài là tính đạo hàm của hàm số y = sin(2x) + cos(x)).
Lời giải:
Đề bài: (Giả sử đề bài là tìm cực trị của hàm số y = x3 - 3x + 2).
Lời giải:
Đề bài: (Giả sử đề bài là giải bài toán tối ưu: Tìm giá trị lớn nhất của diện tích hình chữ nhật nội tiếp trong nửa đường tròn bán kính R).
Lời giải:
Bài toán này đòi hỏi học sinh phải thiết lập hàm diện tích, sử dụng đạo hàm để tìm giá trị lớn nhất và kiểm tra điều kiện của bài toán.
Tusach.vn hy vọng với hướng dẫn chi tiết này, các em sẽ tự tin hơn trong việc giải các bài tập Mục 2 trang 95, 96, 97 SGK Toán 11 tập 2 Chân trời sáng tạo. Chúc các em học tập tốt!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập