1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Bài 6 trang 85 SGK Toán 11 tập 1 - Chân trời sáng tạo

Bài 6 trang 85 SGK Toán 11 tập 1 - Chân trời sáng tạo

Bài 6 trang 85 SGK Toán 11 Tập 1 - Chân trời sáng tạo

Bài 6 trang 85 SGK Toán 11 Tập 1 thuộc chương trình học Toán 11 Chân trời sáng tạo, tập trung vào việc ôn tập chương 1: Hàm số và đồ thị. Bài tập này yêu cầu học sinh vận dụng kiến thức về các loại hàm số, tính đơn điệu, cực trị và ứng dụng của đạo hàm để giải quyết các bài toán cụ thể.

tusach.vn cung cấp lời giải chi tiết, dễ hiểu, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán hiệu quả.

Lực hấp dẫn do Trái Đất tác dụng lên một đơn vị khối lượng ở khoảng cách \(r\) ở tỉnh từ tâm của nó là

Đề bài

Lực hấp dẫn do Trái Đất tác dụng lên một đơn vị khối lượng ở khoảng cách \(r\) ở tỉnh từ tâm của nó là

\(F\left( r \right) = \left\{ {\begin{array}{*{20}{c}}{\frac{{GM{\rm{r}}}}{{{R^3}}}}&{khi\,\,0 < x < R}\\{\frac{{GM}}{{{r^2}}}}&{khi\,\,r \ge R}\end{array}} \right.\)

trong đó \(M\) là khối lượng, \(R\) là bán kính của Trái Đất, \(G\) là hằng số hấp dẫn.

Hàm số \(F\left( r \right)\) có liên tục trên \(\left( {0; + \infty } \right)\) không?

Phương pháp giải - Xem chi tiếtBài 6 trang 85 SGK Toán 11 tập 1 - Chân trời sáng tạo 1

Bước 1: Tìm tập xác định của hàm số.

Bước 2: Xét tính liên tục của hàm số trên từng khoảng xác định.

Bước 3: Xét tính liên tục của hàm số tại điểm \({r_0} = R\).

Bước 4: Kết luận.

Lời giải chi tiết

Hàm số \(F\left( r \right)\) có tập xác định là \(\left( {0; + \infty } \right)\).

Hàm số \(F\left( r \right)\) xác định trên từng khoảng \(\left( {0;R} \right)\) và \(\left( {R; + \infty } \right)\) nên hàm số liên tục trên các khoảng đó.

Ta có: \(F\left( R \right) = \frac{{GM}}{{{R^2}}}\)

\(\begin{array}{l}\mathop {\lim }\limits_{r \to {R^ + }} F\left( r \right) = \mathop {\lim }\limits_{r \to {R^ + }} \frac{{GM}}{{{r^2}}} = \frac{{GM}}{{{R^2}}}\\\mathop {\lim }\limits_{r \to {R^ - }} F\left( r \right) = \mathop {\lim }\limits_{r \to {R^ - }} \frac{{GMr}}{{{R^3}}} = \frac{{GMR}}{{{R^3}}} = \frac{{GM}}{{{R^2}}}\end{array}\)

Vì \(\mathop {\lim }\limits_{r \to {R^ + }} F\left( r \right) = \mathop {\lim }\limits_{r \to {R^ - }} F\left( r \right) = \frac{{GM}}{R}\) nên \(\mathop {\lim }\limits_{r \to R} F\left( r \right) = \frac{{GM}}{R} = F\left( R \right)\).

Vậy hàm số \(F\left( r \right)\) liên tục tại điểm \({r_0} = R\).

Vậy hàm số \(F\left( r \right)\) liên tục trên \(\left( {0; + \infty } \right)\).

Bài 6 trang 85 SGK Toán 11 Tập 1 - Chân trời sáng tạo: Giải chi tiết và hướng dẫn

Bài 6 trang 85 SGK Toán 11 Tập 1 - Chân trời sáng tạo là một bài tập quan trọng trong chương trình học Toán 11, giúp học sinh củng cố kiến thức về hàm số và ứng dụng của đạo hàm. Dưới đây là giải chi tiết bài tập này, cùng với những hướng dẫn hữu ích để bạn có thể tự giải quyết các bài toán tương tự.

Nội dung bài tập

Bài 6 yêu cầu học sinh thực hiện các nhiệm vụ sau:

  • Xác định khoảng đơn điệu của hàm số.
  • Tìm cực trị của hàm số.
  • Vẽ đồ thị hàm số.
  • Giải các bài toán ứng dụng liên quan đến hàm số.

Giải chi tiết

Để giải bài tập này, chúng ta cần thực hiện các bước sau:

  1. Bước 1: Tính đạo hàm của hàm số. Sử dụng các quy tắc đạo hàm cơ bản để tính đạo hàm f'(x) của hàm số đã cho.
  2. Bước 2: Tìm điểm dừng của hàm số. Giải phương trình f'(x) = 0 để tìm các điểm x mà tại đó đạo hàm bằng 0. Các điểm này là các điểm cực trị tiềm năng của hàm số.
  3. Bước 3: Xác định khoảng đơn điệu của hàm số. Xét dấu đạo hàm f'(x) trên các khoảng xác định của hàm số. Nếu f'(x) > 0 trên một khoảng, hàm số đồng biến trên khoảng đó. Nếu f'(x) < 0 trên một khoảng, hàm số nghịch biến trên khoảng đó.
  4. Bước 4: Tìm cực trị của hàm số. Sử dụng tiêu chuẩn xét dấu đạo hàm cấp hai hoặc phương pháp xét dấu đạo hàm cấp một để xác định loại cực trị (cực đại hoặc cực tiểu) tại các điểm dừng.
  5. Bước 5: Vẽ đồ thị hàm số. Dựa vào các thông tin về khoảng đơn điệu, cực trị và các điểm đặc biệt khác của hàm số, vẽ đồ thị hàm số trên mặt phẳng tọa độ.

Ví dụ minh họa

Giả sử hàm số cần xét là f(x) = x3 - 3x2 + 2. Thực hiện các bước trên, ta có:

  • f'(x) = 3x2 - 6x
  • Giải f'(x) = 0, ta được x = 0 và x = 2.
  • Xét dấu f'(x) trên các khoảng (-∞, 0), (0, 2) và (2, +∞), ta thấy hàm số đồng biến trên (-∞, 0) và (2, +∞), nghịch biến trên (0, 2).
  • f''(x) = 6x - 6. f''(0) = -6 < 0, nên x = 0 là điểm cực đại. f''(2) = 6 > 0, nên x = 2 là điểm cực tiểu.

Lưu ý quan trọng

Khi giải bài tập về hàm số, cần chú ý các điểm sau:

  • Xác định đúng tập xác định của hàm số.
  • Tính đạo hàm chính xác.
  • Xét dấu đạo hàm cẩn thận để xác định khoảng đơn điệu.
  • Sử dụng đúng tiêu chuẩn xét cực trị.

Bài tập tương tự

Để rèn luyện kỹ năng giải toán, bạn có thể thử giải các bài tập tương tự sau:

  • Bài 7 trang 85 SGK Toán 11 Tập 1 - Chân trời sáng tạo
  • Bài 8 trang 85 SGK Toán 11 Tập 1 - Chân trời sáng tạo

tusach.vn hy vọng với lời giải chi tiết và hướng dẫn trên, bạn sẽ hiểu rõ hơn về Bài 6 trang 85 SGK Toán 11 Tập 1 - Chân trời sáng tạo và có thể tự tin giải quyết các bài toán tương tự. Chúc bạn học tốt!

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN