1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Bài 8 trang 86 SGK Toán 11 tập 1 - Chân trời sáng tạo

Bài 8 trang 86 SGK Toán 11 tập 1 - Chân trời sáng tạo

Bài 8 trang 86 SGK Toán 11 Tập 1 - Chân trời sáng tạo

Bài 8 trang 86 SGK Toán 11 Tập 1 thuộc chương trình học Toán 11, tập trung vào việc ôn tập chương 1: Hàm số và đồ thị. Bài tập này yêu cầu học sinh vận dụng kiến thức về các loại hàm số, tính đơn điệu, cực trị và ứng dụng của đạo hàm để giải quyết các bài toán cụ thể.

tusach.vn cung cấp lời giải chi tiết, dễ hiểu, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán hiệu quả.

Tìm các giới hạn sau:

Đề bài

Tìm các giới hạn sau:

a) \(\mathop {\lim }\limits_{x \to - 1} \left( {3{x^2} - x + 2} \right)\)

b) \(\mathop {\lim }\limits_{x \to 4} \frac{{{x^2} - 16}}{{x - 4}}\)

c) \(\mathop {\lim }\limits_{x \to 2} \frac{{3 - \sqrt {x + 7} }}{{x - 2}}\)

Phương pháp giải - Xem chi tiếtBài 8 trang 86 SGK Toán 11 tập 1 - Chân trời sáng tạo 1

a) Áp dụng định lý giới hạn hữu hạn của hàm số.

b) Bước 1: Phân tích tử và mẫu thành tích các nhân tử.

Bước 2: Chia cả tử và mẫu cho nhân tử chung của tử và mẫu.

Bước 3: Áp dụng định lý giới hạn hữu hạn của hàm số.

c) Bước 1: Nhân cả tử và mẫu với liên hợp của tử.

Bước 2: Phân tích tử và mẫu thành tích các nhân tử.

Bước 3: Chia cả tử và mẫu cho nhân tử chung của tử và mẫu.

Bước 4: Áp dụng định lý giới hạn hữu hạn của hàm số.

Lời giải chi tiết

a) \(\mathop {\lim }\limits_{x \to - 1} \left( {3{x^2} - x + 2} \right) = \mathop {\lim }\limits_{x \to - 1} \left( {3{x^2}} \right) - \mathop {\lim }\limits_{x \to - 1} x + \mathop {\lim }\limits_{x \to - 1} 2\)

\( = 3\mathop {\lim }\limits_{x \to - 1} \left( {{x^2}} \right) - \mathop {\lim }\limits_{x \to - 1} x + \mathop {\lim }\limits_{x \to - 1} 2 = 3.{\left( { - 1} \right)^2} - \left( { - 1} \right) + 2 = 6\)

b) \(\mathop {\lim }\limits_{x \to 4} \frac{{{x^2} - 16}}{{x - 4}} = \mathop {\lim }\limits_{x \to 4} \frac{{\left( {x - 4} \right)\left( {x + 4} \right)}}{{x - 4}} = \mathop {\lim }\limits_{x \to 4} \left( {x + 4} \right) = \mathop {\lim }\limits_{x \to 4} x + \mathop {\lim }\limits_{x \to 4} 4 = 4 + 4 = 8\)

c) \(\mathop {\lim }\limits_{x \to 2} \frac{{3 - \sqrt {x + 7} }}{{x - 2}} = \mathop {\lim }\limits_{x \to 2} \frac{{\left( {3 - \sqrt {x + 7} } \right)\left( {3 + \sqrt {x + 7} } \right)}}{{\left( {x - 2} \right)\left( {3 + \sqrt {x + 7} } \right)}} = \mathop {\lim }\limits_{x \to 2} \frac{{{3^2} - \left( {x + 7} \right)}}{{\left( {x - 2} \right)\left( {3 + \sqrt {x + 7} } \right)}}\)

\( = \mathop {\lim }\limits_{x \to 2} \frac{{2 - x}}{{\left( {x - 2} \right)\left( {3 + \sqrt {x + 7} } \right)}} = \mathop {\lim }\limits_{x \to 2} \frac{{ - \left( {x - 2} \right)}}{{\left( {x - 2} \right)\left( {3 + \sqrt {x + 7} } \right)}} = \mathop {\lim }\limits_{x \to 2} \frac{{ - 1}}{{3 + \sqrt {x + 7} }}\)

\( = \frac{{\mathop {\lim }\limits_{x \to 2} \left( { - 1} \right)}}{{\mathop {\lim }\limits_{x \to 2} 3 + \sqrt {\mathop {\lim }\limits_{x \to 2} x + \mathop {\lim }\limits_{x \to 2} 7} }} = \frac{{ - 1}}{{3 + \sqrt {2 + 7} }} = - \frac{1}{6}\)

Bài 8 trang 86 SGK Toán 11 Tập 1 - Chân trời sáng tạo: Giải chi tiết và hướng dẫn

Bài 8 trang 86 SGK Toán 11 Tập 1 - Chân trời sáng tạo là một bài tập quan trọng trong chương trình học Toán 11, giúp học sinh củng cố kiến thức về hàm số và ứng dụng của đạo hàm. Dưới đây là giải chi tiết và hướng dẫn giải bài tập này:

Nội dung bài tập

Bài 8 yêu cầu học sinh giải các bài toán liên quan đến:

  • Xác định tính đơn điệu của hàm số.
  • Tìm cực trị của hàm số.
  • Vẽ đồ thị hàm số.
  • Ứng dụng đạo hàm để giải các bài toán thực tế.

Giải chi tiết

Để giải bài 8 trang 86 SGK Toán 11 Tập 1, học sinh cần:

  1. Bước 1: Xác định tập xác định của hàm số.
  2. Bước 2: Tính đạo hàm cấp nhất của hàm số.
  3. Bước 3: Tìm các điểm dừng của hàm số (điểm mà đạo hàm cấp nhất bằng 0 hoặc không tồn tại).
  4. Bước 4: Lập bảng biến thiên để xác định khoảng đồng biến, nghịch biến và cực trị của hàm số.
  5. Bước 5: Vẽ đồ thị hàm số dựa trên bảng biến thiên.

Ví dụ, xét hàm số y = x3 - 3x2 + 2:

  • Tập xác định: D = ℝ
  • Đạo hàm cấp nhất: y' = 3x2 - 6x
  • Điểm dừng: 3x2 - 6x = 0 => x = 0 hoặc x = 2
  • Bảng biến thiên:
x-∞02+∞
y'+-+
y

Từ bảng biến thiên, ta thấy hàm số đồng biến trên khoảng (-∞, 0) và (2, +∞), nghịch biến trên khoảng (0, 2). Hàm số đạt cực đại tại x = 0, y = 2 và cực tiểu tại x = 2, y = -2.

Mẹo giải nhanh

Để giải nhanh bài 8 trang 86 SGK Toán 11 Tập 1, học sinh có thể sử dụng các công cụ hỗ trợ như máy tính bỏ túi hoặc phần mềm vẽ đồ thị. Tuy nhiên, điều quan trọng nhất là nắm vững kiến thức cơ bản và rèn luyện kỹ năng giải toán thường xuyên.

Luyện tập thêm

Để củng cố kiến thức và kỹ năng giải toán, học sinh nên luyện tập thêm các bài tập tương tự trong SGK và các tài liệu tham khảo khác. tusach.vn cung cấp nhiều bài tập luyện tập và lời giải chi tiết, giúp học sinh tự tin hơn trong quá trình học tập.

Kết luận

Bài 8 trang 86 SGK Toán 11 Tập 1 - Chân trời sáng tạo là một bài tập quan trọng, giúp học sinh củng cố kiến thức về hàm số và ứng dụng của đạo hàm. Bằng cách nắm vững kiến thức cơ bản, rèn luyện kỹ năng giải toán và sử dụng các công cụ hỗ trợ, học sinh có thể giải quyết bài tập này một cách hiệu quả.

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN