1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Bài 5 trang 85 SGK Toán 11 tập 1 - Chân trời sáng tạo

Bài 5 trang 85 SGK Toán 11 tập 1 - Chân trời sáng tạo

Bài 5 trang 85 SGK Toán 11 Tập 1 - Chân trời sáng tạo

Bài 5 trang 85 SGK Toán 11 Tập 1 thuộc chương Hàm số lượng giác. Bài tập này yêu cầu học sinh vận dụng kiến thức về hàm số lượng giác, các phép biến đổi lượng giác để giải quyết các bài toán cụ thể.

tusach.vn cung cấp lời giải chi tiết, dễ hiểu, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán hiệu quả.

Một bãi đậu xe ô tô đưa ra giá \(C\left( x \right)\) (đồng) khi thời gian đậu xe là \(x\) (giờ) như sau:

Đề bài

Một bãi đậu xe ô tô đưa ra giá \(C\left( x \right)\) (đồng) khi thời gian đậu xe là \(x\) (giờ) như sau:

\(C\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{60000}&{khi\,\,0 < x \le 2}\\{100000}&{khi{\rm{ }}2 < x \le 4}\\{200000}&{khi{\rm{ }}4 < x \le 24}\end{array}} \right.\)

Xét tính liên tục của hàm số \(C\left( x \right)\).

Phương pháp giải - Xem chi tiếtBài 5 trang 85 SGK Toán 11 tập 1 - Chân trời sáng tạo 1

Bước 1: Tìm tập xác định của hàm số.

Bước 2: Xét tính liên tục của hàm số trên từng khoảng xác định.

Bước 3: Xét tính liên tục của hàm số tại điểm \({x_0} = 2,{x_0} = 4\) và \({x_0} = 24\).

Bước 4: Kết luận.

Lời giải chi tiết

Hàm số \(C\left( x \right)\) có tập xác định là nửa khoảng \(\left( {0;24} \right]\).

Hàm số \(C\left( x \right)\) xác định trên từng khoảng \(\left( {0;2} \right),\left( {2;4} \right)\) và \(\left( {4;24} \right)\) nên hàm số liên tục trên các khoảng đó.

Ta có: \(C\left( 2 \right) = 60000\)

\(\begin{array}{l}\mathop {\lim }\limits_{x \to {2^ + }} C\left( x \right) = \mathop {\lim }\limits_{x \to {2^ + }} 100000 = 100000\\\mathop {\lim }\limits_{x \to {2^ - }} C\left( x \right) = \mathop {\lim }\limits_{x \to {2^ - }} 60000 = 60000\end{array}\)

Vì \(\mathop {\lim }\limits_{x \to {2^ + }} C\left( x \right) \ne \mathop {\lim }\limits_{x \to {2^ - }} C\left( x \right)\) nên không tồn tại \(\mathop {\lim }\limits_{x \to 2} C\left( x \right)\).

Vậy hàm số \(C\left( x \right)\) không liên tục tại điểm \({x_0} = 2\).

Ta có: \(C\left( 4 \right) = 100000\)

\(\begin{array}{l}\mathop {\lim }\limits_{x \to {4^ + }} C\left( x \right) = \mathop {\lim }\limits_{x \to {4^ + }} 200000 = 200000\\\mathop {\lim }\limits_{x \to {4^ - }} C\left( x \right) = \mathop {\lim }\limits_{x \to {4^ - }} 100000 = 100000\end{array}\)

Vì \(\mathop {\lim }\limits_{x \to {4^ + }} C\left( x \right) \ne \mathop {\lim }\limits_{x \to {4^ - }} C\left( x \right)\) nên không tồn tại \(\mathop {\lim }\limits_{x \to 4} C\left( x \right)\).

Vậy hàm số \(C\left( x \right)\) không liên tục tại điểm \({x_0} = 4\).

Ta có: \(C\left( {24} \right) = 200000\)

\(\mathop {\lim }\limits_{x \to {{24}^ - }} C\left( x \right) = \mathop {\lim }\limits_{x \to {{24}^ - }} 200000 = 200000 = C\left( {24} \right)\)

Vậy hàm số \(C\left( x \right)\) liên tục trái tại điểm \({x_0} = 24\).

Vậy hàm số \(C\left( x \right)\) liên tục trên các khoảng \(\left( {0;2} \right),\left( {2;4} \right)\) và nửa khoảng \(\left( {4;24} \right]\).

Bài 5 trang 85 SGK Toán 11 Tập 1 - Chân trời sáng tạo: Giải chi tiết và hướng dẫn

Bài 5 trang 85 SGK Toán 11 Tập 1 - Chân trời sáng tạo là một bài tập quan trọng trong chương Hàm số lượng giác, giúp học sinh củng cố kiến thức về các phép biến đổi lượng giác và ứng dụng vào giải quyết bài toán thực tế. Dưới đây là lời giải chi tiết và hướng dẫn giải bài tập này:

Nội dung bài tập

Bài 5 yêu cầu học sinh thực hiện các phép biến đổi lượng giác để rút gọn biểu thức hoặc chứng minh đẳng thức. Cụ thể, bài tập thường bao gồm các dạng sau:

  • Rút gọn biểu thức lượng giác sử dụng các công thức cộng, trừ, nhân, chia góc.
  • Chứng minh đẳng thức lượng giác bằng cách biến đổi một vế về vế còn lại.
  • Giải phương trình lượng giác cơ bản.

Lời giải chi tiết

Để giải bài 5 trang 85 SGK Toán 11 Tập 1 - Chân trời sáng tạo, học sinh cần nắm vững các công thức lượng giác cơ bản sau:

  • sin(a + b) = sin(a)cos(b) + cos(a)sin(b)
  • sin(a - b) = sin(a)cos(b) - cos(a)sin(b)
  • cos(a + b) = cos(a)cos(b) - sin(a)sin(b)
  • cos(a - b) = cos(a)cos(b) + sin(a)sin(b)
  • tan(a + b) = (tan(a) + tan(b)) / (1 - tan(a)tan(b))
  • tan(a - b) = (tan(a) - tan(b)) / (1 + tan(a)tan(b))

Ví dụ, xét bài tập sau:

Rút gọn biểu thức: A = sin(π/3 + x) + sin(π/3 - x)

Lời giải:

A = sin(π/3 + x) + sin(π/3 - x) = (sin(π/3)cos(x) + cos(π/3)sin(x)) + (sin(π/3)cos(x) - cos(π/3)sin(x))

A = 2sin(π/3)cos(x) = 2 * (√3/2) * cos(x) = √3cos(x)

Mẹo giải nhanh

Để giải nhanh các bài tập về biến đổi lượng giác, học sinh có thể áp dụng các mẹo sau:

  • Sử dụng các công thức biến đổi lượng giác một cách linh hoạt.
  • Biến đổi biểu thức về dạng đơn giản nhất có thể.
  • Chú ý các giá trị lượng giác đặc biệt (0, π/6, π/4, π/3, π/2).

Bài tập tương tự

Để rèn luyện kỹ năng giải bài tập về biến đổi lượng giác, học sinh có thể tham khảo các bài tập tương tự sau:

  • Rút gọn biểu thức: B = cos(π/4 + x) - cos(π/4 - x)
  • Chứng minh đẳng thức: sin(a + b)sin(a - b) = sin2(a) - sin2(b)

Kết luận

Bài 5 trang 85 SGK Toán 11 Tập 1 - Chân trời sáng tạo là một bài tập quan trọng giúp học sinh củng cố kiến thức về biến đổi lượng giác. Bằng cách nắm vững các công thức và áp dụng các mẹo giải nhanh, học sinh có thể giải quyết bài tập này một cách hiệu quả.

tusach.vn hy vọng với lời giải chi tiết và hướng dẫn trên, các bạn học sinh sẽ hiểu rõ hơn về bài tập này và đạt kết quả tốt trong môn Toán 11.

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN