Chào mừng bạn đến với lời giải chi tiết mục 3 trang 16,17 sách giáo khoa Toán 11 tập 1 chương trình Chân trời sáng tạo. Bài viết này sẽ cung cấp đáp án chính xác và phương pháp giải bài tập một cách dễ hiểu, giúp các em học sinh tự tin hơn trong quá trình học tập.
Chúng tôi luôn cố gắng mang đến những tài liệu học tập chất lượng cao, hỗ trợ tối đa cho học sinh và giáo viên.
a) Trong Hình 5, M là điểm biểu diễn của góc lượng giác α trên đường tròn lượng giác. Giải thích vì sao ({sin ^2}alpha + {cos ^2}alpha = 1)
a) Trong Hình 5, M là điểm biểu diễn của góc lượng giác α trên đường tròn lượng giác. Giải thích vì sao \({\sin ^2}\alpha + {\cos ^2}\alpha = 1\)

b) Chia cả hai vế của biểu thức ở câu a) cho \({\cos ^2}\alpha \) ta được đẳng thức nào?
c) Chia cả hai vế của biểu thức ở câu a) cho \({\sin ^2}\alpha \) ta được đẳng thức nào?
Phương pháp giải:
Dựa vào kiến thức đã học ở phần trên để chứng minh
Lời giải chi tiết:
a) Do \(\begin{array}{l}\sin \alpha = MH \Rightarrow {\sin ^2}\alpha = M{H^2}\\\cos \alpha = OH \Rightarrow {\cos ^2}\alpha = O{H^2}\end{array}\)
Áp dụng định lý Py – Ta – Go vào tam giác OMH vuông tại H ta có:
\(\begin{array}{l}M{H^2} + O{H^2} = O{M^2} = 1\\ \Rightarrow {\sin ^2}\alpha + {\cos ^2}\alpha = 1\end{array}\)
b) Chia cả hai vế cho \({\cos ^2}\alpha \), ta được:
\(\begin{array}{l}\frac{{{{\sin }^2}\alpha }}{{{{\cos }^2}\alpha }} + \frac{{{{\cos }^2}\alpha }}{{{{\cos }^2}\alpha }} = \frac{1}{{{{\cos }^2}\alpha }}\\ \Leftrightarrow {\tan ^2}\alpha + 1 = \frac{1}{{{{\cos }^2}\alpha }}\end{array}\)
c) Chia cả hai vế cho \({\sin ^2}\alpha \), ta được:
\(\begin{array}{l}\frac{{{{\sin }^2}\alpha }}{{{{\sin }^2}\alpha }} + \frac{{{{\cos }^2}\alpha }}{{{{\sin }^2}\alpha }} = \frac{1}{{{{\sin }^2}\alpha }}\\ \Leftrightarrow {\cot ^2}\alpha + 1 = \frac{1}{{{{\sin }^2}\alpha }}\end{array}\)
Cho \(\tan \alpha = \frac{2}{3}\) với \(\pi < \alpha < \frac{{3\pi }}{2}\). Tính \(\cos \alpha \) và \(\sin \alpha \)
Phương pháp giải:
Dựa vào công thức đã học ở phần trên để tính
Lời giải chi tiết:
Ta có:
\(\begin{array}{l}{\tan ^2}\alpha + 1 = \frac{1}{{{{\cos }^2}\alpha }}\\ \Rightarrow {\left( {\frac{2}{3}} \right)^2} + 1 = \frac{1}{{{{\cos }^2}\alpha }}\\ \Rightarrow \frac{1}{{{{\cos }^2}\alpha }} = \frac{{13}}{9}\\ \Rightarrow \cos \alpha = \pm \frac{{3\sqrt {13} }}{{13}}\end{array}\)
Do \(\pi < \alpha < \frac{{3\pi }}{2} \Rightarrow \cos \alpha = - \frac{{3\sqrt {13} }}{{13}}\)
Ta có: \(\begin{array}{l}\tan \alpha = \frac{{\sin \alpha }}{{\cos \alpha }} \Rightarrow \frac{2}{3} = \sin \alpha :\left( { - \frac{{3\sqrt {13} }}{{13}}} \right)\\ \Rightarrow \sin \alpha = - \frac{{2\sqrt {13} }}{{13}}\end{array}\)
Mục 3 trang 16,17 SGK Toán 11 tập 1 Chân trời sáng tạo tập trung vào việc ôn tập và củng cố kiến thức về hàm số bậc hai. Đây là một phần quan trọng trong chương trình Toán 11, vì hàm số bậc hai là nền tảng cho nhiều kiến thức nâng cao hơn trong các lớp học tiếp theo. Bài viết này sẽ đi sâu vào từng bài tập trong mục 3, cung cấp lời giải chi tiết, dễ hiểu và các phương pháp giải hiệu quả.
Bài tập này yêu cầu học sinh xác định các hệ số a, b, c của hàm số bậc hai cho trước. Để làm được bài này, học sinh cần nắm vững dạng tổng quát của hàm số bậc hai: y = ax2 + bx + c. Sau đó, so sánh hàm số cho trước với dạng tổng quát để xác định các hệ số a, b, c.
Để tìm đỉnh và trục đối xứng của parabol, học sinh cần sử dụng công thức sau:
Sau khi tính được các giá trị này, học sinh có thể vẽ được đồ thị của hàm số bậc hai.
Để giải phương trình bậc hai, học sinh có thể sử dụng các phương pháp sau:
Tùy thuộc vào từng phương trình cụ thể, học sinh có thể lựa chọn phương pháp phù hợp nhất.
Hy vọng rằng bài viết này đã cung cấp cho các bạn những kiến thức và kỹ năng cần thiết để giải quyết các bài tập trong mục 3 trang 16,17 SGK Toán 11 tập 1 Chân trời sáng tạo. Chúc các bạn học tập tốt và đạt kết quả cao!
| Bài tập | Lời giải |
|---|---|
| Bài 1 | Xác định hệ số a, b, c... |
| Bài 2 | Tìm đỉnh và trục đối xứng... |
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập