Bài 12 thuộc chương trình học Toán 11 tập 1, tập trung vào việc ôn tập chương 3: Hàm số lượng giác. Bài tập này yêu cầu học sinh vận dụng kiến thức về hàm số lượng giác, các phép biến đổi lượng giác và giải phương trình lượng giác để giải quyết các bài toán cụ thể.
tusach.vn cung cấp lời giải chi tiết, dễ hiểu, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán hiệu quả.
Cho hai hình bình hành (ABCD) và (ABEF) nằm trong hai mặt phẳng khác nhau. Lấy các điểm (M,N) lần lượt thuộc các đường chéo (AC) và (BF) sao cho (MC = 2MA;NF = 2NB). Qua (M,N) kẻ các đường thẳng song song với (AB), cắt các cạnh (AD,AF) lần lượt tại ({M_1},{N_1}). Chứng minh rằng:
Đề bài
Cho hai hình bình hành \(ABCD\) và \(ABEF\) nằm trong hai mặt phẳng khác nhau. Lấy các điểm \(M,N\) lần lượt thuộc các đường chéo \(AC\) và \(BF\) sao cho \(MC = 2MA;NF = 2NB\). Qua \(M,N\) kẻ các đường thẳng song song với \(AB\), cắt các cạnh \(AD,AF\) lần lượt tại \({M_1},{N_1}\). Chứng minh rằng:
a) \(MN\parallel DE\);
b) \({M_1}{N_1}\parallel \left( {DEF} \right)\);
c) \(\left( {MN{N_1}{M_1}} \right)\parallel \left( {DEF} \right)\).
Phương pháp giải - Xem chi tiết
Sử dụng các định lí, tính chất:
‒ Tính chất trọng tâm của tam giác.
‒ Định lí Thalès trong tam giác.
– Nếu đường thẳng \(a\) không nằm trong mặt phẳng \(\left( P \right)\) và song song với một đường thẳng \(b\) nào đó nằm trong \(\left( P \right)\) thì \(a\) song song với \(\left( P \right)\).
‒ Nếu mặt phẳng \(\left( P \right)\) chứa hai đường thẳng \(a,b\) cắt nhau và hai đường thẳng đó cùng song song với mặt phẳng \(\left( Q \right)\) thì \(\left( P \right)\) song song với \(\left( Q \right)\).
Lời giải chi tiết

a) Vì AI // CD nên \(\frac{{AI}}{{CD}} = \frac{{IM}}{{MD}} = \frac{{AM}}{{MC}} = \frac{1}{2}\) (định lý Thales).
Vì IB // EF nên \(\frac{{IB}}{{EF}} = \frac{{IN}}{{NE}} = \frac{{BN}}{{NF}} = \frac{1}{2}\) (định lý Thales).
Do đó \(\frac{{IM}}{{MD}} = \frac{{IN}}{{NE}} = \frac{1}{2}\), suy ra MN // DE (định lý Thales đảo).
b) Theo giả thiết, AB // \(M{M_1}\) và \(M{M_1}\) không thuộc (ABEF) nên \(M{M_1}\) // (ABEF).
c) Ta có \(M{M_1}\) // AB // EF, suy ra \(M{M_1}\) // (DEF) (1)
Vì \(N{N_1}\) // AB nên \(\frac{{A{N_1}}}{{{N_1}F}} = \frac{{BN}}{{NF}} = \frac{1}{2}\) (định lý Thales).
Vì \(M{M_1}\) // AB nên \(\frac{{A{M_1}}}{{{M_1}D}} = \frac{{AM}}{{MC}} = \frac{1}{2}\) (định lý Thales).
Do đó \(\frac{{A{N_1}}}{{{N_1}F}} = \frac{{A{M_1}}}{{{M_1}D}} = \frac{1}{2}\), suy ra \({M_1}{N_1}\) // DF và \({M_1}{N_1}\) // (DEF) (2).
Mà \(M{M_1}\) cắt \({M_1}{N_1}\) (3).
Từ (1), (2), (3) suy ra \((MN{N_1}{M_1})\) // (DEF).
Chào mừng các em học sinh đến với lời giải chi tiết Bài 12 trang 128 SGK Toán 11 tập 1 - Chân trời sáng tạo. Bài tập này là một phần quan trọng trong quá trình ôn tập chương 3 về Hàm số lượng giác, giúp các em củng cố kiến thức và rèn luyện kỹ năng giải toán.
Bài 12 thường bao gồm các dạng bài tập sau:
Để minh họa, chúng ta sẽ xem xét một ví dụ cụ thể. Giả sử bài tập yêu cầu:
"Tìm tập xác định của hàm số y = tan(2x - π/3)"
Lời giải:
Hàm số y = tan(u) xác định khi và chỉ khi u ≠ π/2 + kπ, với k là số nguyên. Do đó, để hàm số y = tan(2x - π/3) xác định, ta cần:
2x - π/3 ≠ π/2 + kπ
2x ≠ 5π/6 + kπ
x ≠ 5π/12 + kπ/2, với k là số nguyên.
Vậy, tập xác định của hàm số là D = R \ {5π/12 + kπ/2 | k ∈ Z}.
Để giải các bài tập về hàm số lượng giác một cách hiệu quả, các em nên:
Ngoài SGK Toán 11 tập 1 - Chân trời sáng tạo, các em có thể tham khảo thêm các tài liệu sau:
Bài 12 trang 128 SGK Toán 11 tập 1 - Chân trời sáng tạo là một bài tập quan trọng giúp các em củng cố kiến thức về hàm số lượng giác. Hy vọng với lời giải chi tiết và các mẹo giải toán hiệu quả mà tusach.vn cung cấp, các em sẽ học tập tốt và đạt kết quả cao trong môn Toán.
Nếu có bất kỳ thắc mắc nào, đừng ngần ngại liên hệ với chúng tôi để được hỗ trợ!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập