Chào mừng bạn đến với lời giải chi tiết mục 1 trang 6, 7 sách giáo khoa Toán 11 tập 2 chương trình Chân trời sáng tạo. Bài viết này sẽ cung cấp đáp án chính xác và phương pháp giải bài tập một cách dễ hiểu, giúp các em học sinh tự tin hơn trong quá trình học tập.
Chúng tôi luôn cố gắng mang đến những tài liệu học tập chất lượng cao, hỗ trợ tối đa cho học sinh và giáo viên.
Cho biết dãy số (left( {{a_n}} right)) được xác định theo một quy luật nào đó và bốn số hạng đầu tiên của nó được cho như ở bảng dưới đây:
Cho biết dãy số \(\left( {{a_n}} \right)\) được xác định theo một quy luật nào đó và bốn số hạng đầu tiên của nó được cho như ở bảng dưới đây:

a) Tìm quy luật của dãy số và tìm ba số hạng tiếp theo của nó.
b) Nếu viết các số hạng của dãy số dưới dạng luỹ thừa, thì bốn số hạng đầu tiên có thể viết thành \({2^4};{2^3};{2^2};{2^1}\). Dự đoán cách viết dưới dạng luỹ thừa của ba số hạng tiếp theo của dãy số và giải thích.
Phương pháp giải:
Dựa vào mối liên hệ giữa các số hạng của dãy số.
Lời giải chi tiết:
a) Quy luật: Mỗi số hạng (kể từ số hạng thứ hai) bằng số hạng đứng trước nó chia cho 2.
Vậy ba số hạng tiếp theo là: \({a_5} = 1;{a_6} = \frac{1}{2};{a_7} = \frac{1}{4}\).
b) Các số hạng của dãy số có dạng \({2^n}\), với số mũ của số liền sau ít hơn số mũ của số liền trước 1 đơn vị.
Vậy ta có thể viết ba số hạng tiếp theo là: \({a_5} = {2^0};{a_6} = {2^{ - 1}};{a_7} = {2^{ - 2}}\).
Tính giá trị các biểu thức sau:
a) \({\left( { - 5} \right)^{ - 1}}\);
b) \({2^0}.{\left( {\frac{1}{2}} \right)^{ - 5}}\);
c) \({6^{ - 2}}.{\left( {\frac{1}{3}} \right)^{ - 3}}:{2^{ - 2}}\).
Phương pháp giải:
‒ Sử dụng các phép tính luỹ thừa.
‒ Sử dụng định nghĩa luỹ thừa của số mũ âm: Với số nguyên dương \(n\), số thực \(a \ne 0\), luỹ thừa của \(a\) với số mũ \( - n\) được xác định bởi: \({a^{ - n}} = \frac{1}{{{a^n}}}\).
Lời giải chi tiết:
a) \({\left( { - 5} \right)^{ - 1}} = \frac{1}{{{{\left( { - 5} \right)}^1}}} = \frac{1}{{ - 5}} = - \frac{1}{5}\)
b) \({2^0}.{\left( {\frac{1}{2}} \right)^{ - 5}} = {2^0}.\frac{1}{{{{\left( {\frac{1}{2}} \right)}^5}}} = 1.\frac{1}{{\frac{1}{{32}}}} = 32\)
c) \({6^{ - 2}}.{\left( {\frac{1}{3}} \right)^{ - 3}}:{2^{ - 2}} = \frac{1}{{{6^2}}}.\frac{1}{{{{\left( {\frac{1}{3}} \right)}^3}}}:\frac{1}{{{2^2}}} = \frac{1}{{36}}.\frac{1}{{\frac{1}{{27}}}}:\frac{1}{4} = \frac{1}{{36}}.27.4 = 3\)
Trong khoa học, người ta thường phải ghi các số rất lớn hoặc rất bé. Để tránh phải viết và đếm quá nhiều chữ số 0, người ta quy ước cách ghi các số dưới dạng \(A{.10^m}\), trong đó \(1 \le A \le 10\) và \(m\) là số nguyên.
Khi một số được ghi dưới dạng này, ta nói nó được ghi dưới dạng kí hiệu khoa học.
Chẳng hạn, khoảng cách 149 600 000 km từ Trái Đất đến Mặt Trời được ghi dưới dạng kí hiệu khoa học là \(1,{496.10^8}\) km.
Ghi các đại lượng sau dưới dạng kí hiệu khoa học:
a) Vận tốc ánh sáng trong chân không là 299790000 m/s;
b) Khối lượng nguyên tử của oxygen là 0,000 000 000 000 000 000 000 000 026 57 kg.
Phương pháp giải:
Sử dụng các phép tính luỹ thừa.
Lời giải chi tiết:
a) Vận tốc ánh sáng trong chân không là \(2,{9979.10^8}\) m/s;
b) Khối lượng nguyên tử của oxygen là \(2,{657.10^{ - 26}}\) kg.
Mục 1 trang 6, 7 SGK Toán 11 tập 2 Chân trời sáng tạo tập trung vào việc ôn tập và hệ thống hóa kiến thức về đạo hàm. Đây là một phần quan trọng trong chương trình Toán 11, là nền tảng cho các kiến thức nâng cao hơn ở các lớp trên. Việc nắm vững kiến thức về đạo hàm không chỉ giúp học sinh giải quyết các bài tập trong sách giáo khoa mà còn ứng dụng vào thực tế.
Bài tập này yêu cầu học sinh vận dụng các quy tắc tính đạo hàm đã học để tính đạo hàm của các hàm số đơn giản. Ví dụ:
a) f(x) = x3 + 2x2 - 5x + 1
Giải: f'(x) = 3x2 + 4x - 5
b) f(x) = sin(x) + cos(x)
Giải: f'(x) = cos(x) - sin(x)
Bài tập này yêu cầu học sinh sử dụng quy tắc tính đạo hàm của thương.
Giải:
y' = [(2x)(x-1) - (x2 + 1)(1)] / (x-1)2 = (2x2 - 2x - x2 - 1) / (x-1)2 = (x2 - 2x - 1) / (x-1)2
Bài tập này yêu cầu học sinh tìm đạo hàm bậc nhất, giải phương trình f'(x) = 0 để tìm các điểm cực trị, sau đó xét dấu đạo hàm bậc nhất để xác định loại cực trị.
Giải:
f'(x) = 4x3 - 8x = 4x(x2 - 2)
f'(x) = 0 ⇔ x = 0 hoặc x = ±√2
Xét dấu f'(x):
Vậy hàm số đạt cực tiểu tại x = -√2 và x = √2, đạt cực đại tại x = 0.
Hy vọng với lời giải chi tiết và hướng dẫn cụ thể này, các em học sinh sẽ tự tin hơn khi giải các bài tập trong Mục 1 trang 6, 7 SGK Toán 11 tập 2 Chân trời sáng tạo. Chúc các em học tốt!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập