1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Bài 8 trang 143 SGK Toán 11 tập 1 - Chân trời sáng tạo

Bài 8 trang 143 SGK Toán 11 tập 1 - Chân trời sáng tạo

Bài 8 trang 143 SGK Toán 11 Tập 1 - Chân trời sáng tạo

Bài 8 thuộc chương trình Toán 11 Tập 1, tập trung vào việc ôn tập chương 3: Hàm số lượng giác. Bài tập này yêu cầu học sinh vận dụng kiến thức về các hàm số lượng giác cơ bản, tính chất của chúng và các phương pháp giải phương trình lượng giác.

tusach.vn cung cấp lời giải chi tiết, dễ hiểu, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán hiệu quả.

Tổng lượng mưa trong tháng 8 đo được tại một trạm quan trắc đặt tại Vũng Tàu từ năm 2002 đến năm 2020 được ghi lại như dưới đây (đơn vị: mm):

Đề bài

Tổng lượng mưa trong tháng 8 đo được tại một trạm quan trắc đặt tại Vũng Tàu từ năm 2002 đến năm 2020 được ghi lại như dưới đây (đơn vị: mm): 

Bài 8 trang 143 SGK Toán 11 tập 1 - Chân trời sáng tạo 1

(Nguồn: Tổng cục Thống kê)

a) Xác định số trung bình, tứ phân vị và mốt của mẫu số liệu trên.

b) Hoàn thiện bảng tần số ghép nhóm theo mẫu sau:

Bài 8 trang 143 SGK Toán 11 tập 1 - Chân trời sáng tạo 2

c) Hãy ước lượng số trung bình, tứ phân vị và mốt của mẫu số liệu ở bảng tần số ghép nhóm trên.

Phương pháp giải - Xem chi tiếtBài 8 trang 143 SGK Toán 11 tập 1 - Chân trời sáng tạo 3

a) Sắp xếp dãy số liệu theo thứ tự không giảm và tìm tứ phân vị.

b) Đếm và lập bảng.

c) Sử dụng công thức tính số trung bình, tứ phân vị và mốt của mẫu số liệu ở bảng tần số ghép nhóm.

Lời giải chi tiết

a) Sắp xếp lại dãy số liệu theo thứ tự không giảm:

Bài 8 trang 143 SGK Toán 11 tập 1 - Chân trời sáng tạo 4

Số trung bình của số liệu là: \(\bar x \approx 192,41\)

Tứ phân vị thứ nhất là: \({x_5} = 165,6\)

Tứ phân vị thứ hai là: \({x_{10}} = 173\)

Tứ phân vị thứ ba là: \({x_{15}} = 220,7\)

Giá trị xuất hiện nhiều nhất là \({M_O} = 165,9\)

b)

Bài 8 trang 143 SGK Toán 11 tập 1 - Chân trời sáng tạo 5

c) Ta có:

Bài 8 trang 143 SGK Toán 11 tập 1 - Chân trời sáng tạo 6

• Lượng mưa trung bình trong tháng 8 là:

\(\bar x = \frac{{10.147,5 + 5.202,5 + 3.257,5 + 1.312,5}}{{19}} \approx 188,03\)

• Nhóm chứa mốt của mẫu số liệu trên là nhóm \(\begin{array}{*{20}{l}}{\left[ {120;175} \right)}\end{array}\).

Do đó: \({u_m} = 120;{n_{m - 1}} = 0;{n_m} = 10;{n_{m + 1}} = 5;{u_{m + 1}} - {u_m} = 175 - 120 = 55\)

Mốt của mẫu số liệu ghép nhóm là:

\({M_O} = {u_m} + \frac{{{n_m} - {n_{m - 1}}}}{{\left( {{n_m} - {n_{m - 1}}} \right) + \left( {{n_m} - {n_{m + 1}}} \right)}}.\left( {{u_{m + 1}} - {u_m}} \right) = 120 + \frac{{120 - 0}}{{\left( {120 - 0} \right) + \left( {120 - 5} \right)}}.55 \approx 148,09\)

• Gọi \({x_1};{x_2};...;{x_{19}}\) là lượng mưa trong tháng 8 được xếp theo thứ tự không giảm.

Ta có:

\({x_1},...,{x_{10}} \in \begin{array}{*{20}{c}}{\begin{array}{*{20}{l}}{\left[ {120;175} \right)}\end{array}}\end{array};{x_{11}},...,{x_{15}} \in \begin{array}{*{20}{l}}{\left[ {175;230} \right)}\end{array};{x_{16}},{x_{17}},{x_{18}} \in \begin{array}{*{20}{l}}{\left[ {230;285} \right)}\end{array};{x_{19}} \in \begin{array}{*{20}{l}}{\left[ {285;340} \right)}\end{array}\)

Tứ phân vị thứ hai của dãy số liệu là: \({x_{10}}\)

Ta có: \(n = 19;{n_m} = 10;C = 0;{u_m} = 120;{u_{m + 1}} = 175\)

Do \({x_{10}} \in \begin{array}{*{20}{l}}{\left[ {120;175} \right)}\end{array}\) nên tứ phân vị thứ hai của dãy số liệu là:

\({Q_2} = {u_m} + \frac{{\frac{n}{2} - C}}{{{n_m}}}.\left( {{u_{m + 1}} - {u_m}} \right) = 120 + \frac{{\frac{{19}}{2} - 0}}{{10}}.\left( {175 - 120} \right) = 172,25\)

Tứ phân vị thứ nhất của dãy số liệu là: \({x_5}\).

Ta có: \(n = 19;{n_m} = 10;C = 0;{u_m} = 120;{u_{m + 1}} = 175\)

Do \({x_5} \in \begin{array}{*{20}{l}}{\left[ {120;175} \right)}\end{array}\) nên tứ phân vị thứ nhất của dãy số liệu là:

\({Q_1} = {u_m} + \frac{{\frac{n}{4} - C}}{{{n_m}}}.\left( {{u_{m + 1}} - {u_m}} \right) = 120 + \frac{{\frac{{19}}{4} - 0}}{{10}}.\left( {175 - 120} \right) = 146,125\)

Tứ phân vị thứ ba của dãy số liệu là: \({x_{16}}\).

Ta có: \(n = 19;{n_j} = 3;C = 10 + 5 = 15;{u_j} = 230;{u_{j + 1}} = 285\)

Do \({x_{16}} \in \begin{array}{*{20}{l}}{\begin{array}{*{20}{l}}{\left[ {230;285} \right)}\end{array}}\end{array}\) nên tứ phân vị thứ ba của dãy số liệu là:

\({Q_3} = {u_j} + \frac{{\frac{{3n}}{4} - C}}{{{n_j}}}.\left( {{u_{j + 1}} - {u_j}} \right) = 230 + \frac{{\frac{{3.19}}{4} - 15}}{3}.\left( {285 - 230} \right) = 216,25\)

Bài 8 trang 143 SGK Toán 11 Tập 1 - Chân trời sáng tạo: Giải chi tiết và hướng dẫn

Bài 8 trang 143 SGK Toán 11 Tập 1 - Chân trời sáng tạo là một bài tập quan trọng trong chương trình học, giúp học sinh củng cố kiến thức về hàm số lượng giác và phương pháp giải phương trình lượng giác. Dưới đây là lời giải chi tiết và hướng dẫn giải bài tập này:

Nội dung bài tập

Bài 8 yêu cầu giải các phương trình lượng giác sau:

  • a) sin(x) = 1/2
  • b) cos(x) = -√3/2
  • c) tan(x) = 1
  • d) cot(x) = 0

Lời giải chi tiết

a) sin(x) = 1/2

Phương trình sin(x) = 1/2 có nghiệm là:

  • x = π/6 + k2π (k ∈ Z)
  • x = 5π/6 + k2π (k ∈ Z)

b) cos(x) = -√3/2

Phương trình cos(x) = -√3/2 có nghiệm là:

  • x = 5π/6 + k2π (k ∈ Z)
  • x = 7π/6 + k2π (k ∈ Z)

c) tan(x) = 1

Phương trình tan(x) = 1 có nghiệm là:

  • x = π/4 + kπ (k ∈ Z)

d) cot(x) = 0

Phương trình cot(x) = 0 có nghiệm là:

  • x = π/2 + kπ (k ∈ Z)

Hướng dẫn giải và lưu ý

Khi giải các phương trình lượng giác, cần lưu ý:

  • Sử dụng các công thức lượng giác cơ bản để biến đổi phương trình về dạng đơn giản hơn.
  • Xác định đúng khoảng giá trị của x để tìm ra tất cả các nghiệm của phương trình.
  • Kiểm tra lại các nghiệm để đảm bảo tính chính xác.

Bài tập tương tự

Để rèn luyện kỹ năng giải phương trình lượng giác, bạn có thể tham khảo các bài tập tương tự sau:

  • Giải phương trình sin(2x) = √2/2
  • Giải phương trình cos(x/2) = 0
  • Giải phương trình tan(3x) = -1

Kết luận

Bài 8 trang 143 SGK Toán 11 Tập 1 - Chân trời sáng tạo là một bài tập quan trọng giúp học sinh củng cố kiến thức về hàm số lượng giác và phương pháp giải phương trình lượng giác. Việc nắm vững kiến thức và kỹ năng giải bài tập này sẽ giúp học sinh tự tin hơn trong các kỳ thi và ứng dụng vào thực tế.

tusach.vn hy vọng với lời giải chi tiết và hướng dẫn trên, các bạn học sinh sẽ hiểu rõ hơn về bài tập này và đạt kết quả tốt trong học tập.

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN