Chào mừng bạn đến với lời giải chi tiết mục 1 trang 54, 55 SGK Toán 11 tập 2, chương trình Chân trời sáng tạo. Bài viết này sẽ cung cấp đáp án chính xác, dễ hiểu cùng với phương pháp giải bài tập hiệu quả.
Chúng tôi hiểu rằng việc tự học đôi khi gặp nhiều khó khăn. Vì vậy, tusach.vn luôn cố gắng mang đến những tài liệu học tập chất lượng, hỗ trợ bạn học tốt môn Toán 11.
Cho hai đường thẳng chéo nhau (a) và (b) trong không gian. Qua một điểm (M)
Cho hai đường thẳng chéo nhau \(a\) và \(b\) trong không gian. Qua một điểm \(M\) tuỳ ý vẽ \(a'\parallel a\) và vẽ \(b'\parallel b\). Khi thay đổi vị trí của điểm \(M\), có nhận xét gì về góc giữa \(a'\) và \(b'\)?
Phương pháp giải:
Quan sát hình ảnh và nhận xét.
Lời giải chi tiết:
Khi thay đổi vị trí của điểm \(M\), góc giữa \(a'\) và \(b'\) không đổi.
Cho hình hộp \(ABCD.A'B'C'D'\) có 6 mặt đều là hình vuông \(M,N,E,F\) lần lượt là trung điểm các cạnh \(BC,BA,AA',A'D'\). Tính góc giữa các cặp đường thẳng:
a) \(MN\) và \(DD'\);
b) \(MN\) và \(CD'\);
c) \(EF\) và \(CC'\).
Phương pháp giải:
Cách xác định góc giữa hai đường thẳng \(a\) và \(b\):
Bước 1: Lấy một điểm \(O\) bất kì.
Bước 2: Qua điểm \(O\) dựng đường thẳng \(a'\parallel a\) và đường thẳng \(b'\parallel b\).
Bước 3: Tính \(\left( {a,b} \right) = \left( {a',b'} \right)\).
Lời giải chi tiết:

a) Ta có: \(M\) là trung điểm của \(BC\)
\(N\) là trung điểm của \(AB\)
\( \Rightarrow MN\) là đường trung bình của tam giác \(ABC\)
\( \Rightarrow MN\parallel AC\)
Mà \(DD'\parallel AA'\)
\( \Rightarrow \left( {MN,DD'} \right) = \left( {AC,AA'} \right) = \widehat {A'AC} = {90^ \circ }\).
b) Ta có: \(MN\parallel AC\)
\( \Rightarrow \left( {MN,CD'} \right) = \left( {AC,C{\rm{D}}'} \right) = \widehat {AC{\rm{D}}'}\)
Vì \(ABC{\rm{D}},ADD'A',C{\rm{DD}}'{\rm{C}}'\) là các hình vuông bằng nhau nên các đường chéo của chúng bằng nhau. Vậy \(AC = A{\rm{D}}' = C{\rm{D}}'\)
\( \Rightarrow \Delta AC{\rm{D}}'\) là tam giác đều \( \Rightarrow \widehat {AC{\rm{D}}'} = {60^ \circ }\).
Vậy \(\left( {MN,CD'} \right) = {60^ \circ }\).
Khung của một mái nhà được ghép bởi các thanh gỗ như Hình 3. Cho biết tam giác \(OMN\) vuông cân tại \(O\). Tính góc giữa hai thanh gỗ \(a\) và \(b\).

Phương pháp giải:
Cách xác định góc giữa hai đường thẳng \(a\) và \(b\):
Bước 1: Lấy một điểm \(O\) bất kì.
Bước 2: Qua điểm \(O\) dựng đường thẳng \(a'\parallel a\) và đường thẳng \(b'\parallel b\).
Bước 3: Tính \(\left( {a,b} \right) = \left( {a',b'} \right)\).
Lời giải chi tiết:
Ta có: \(a\parallel OM \Rightarrow \left( {a,b} \right) = \left( {OM,b} \right) = \widehat {MON} = {90^ \circ }\).
Mục 1 trang 54, 55 SGK Toán 11 tập 2 chương trình Chân trời sáng tạo thường tập trung vào các kiến thức về đạo hàm của hàm số. Đây là một phần quan trọng trong chương trình Toán 11, nền tảng cho các kiến thức nâng cao hơn ở các lớp trên. Việc nắm vững kiến thức và kỹ năng giải bài tập trong mục này là vô cùng cần thiết.
Dưới đây là hướng dẫn giải chi tiết các bài tập trong Mục 1 trang 54, 55 SGK Toán 11 tập 2 Chân trời sáng tạo:
Giải:
Giải:
Sử dụng quy tắc đạo hàm của thương:
y' = [(x2 + 1)'(x - 1) - (x2 + 1)(x - 1)'] / (x - 1)2
y' = [2x(x - 1) - (x2 + 1)] / (x - 1)2
y' = (2x2 - 2x - x2 - 1) / (x - 1)2
y' = (x2 - 2x - 1) / (x - 1)2
Giải:
f'(x) = 4x3 - 8x
Giải phương trình f'(x) = 0:
4x3 - 8x = 0
4x(x2 - 2) = 0
x = 0 hoặc x = ±√2
Khảo sát dấu của f'(x) để xác định các điểm cực trị.
Kết luận: Hàm số có các điểm cực trị tại x = 0, x = √2, x = -√2.
Hy vọng bài viết này đã giúp bạn hiểu rõ hơn về Mục 1 trang 54, 55 SGK Toán 11 tập 2 chương trình Chân trời sáng tạo. Chúc bạn học tốt!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập