Chào mừng các em học sinh đến với lời giải chi tiết mục 1 trang 7, 8, 9 SGK Toán 11 tập 1 chương trình Chân trời sáng tạo. Tusach.vn luôn đồng hành cùng các em trong quá trình học tập, cung cấp đáp án chính xác và dễ hiểu nhất.
Mục tiêu của chúng tôi là giúp các em hiểu rõ bản chất của bài học, rèn luyện kỹ năng giải toán và đạt kết quả tốt nhất trong các kỳ thi.
Hoạt động 1: Một chiếc bánh lái tàu có thể quay theo cả hai chiều. Trong Hình 1 và Hình 2, lúc đầu thanh OM ở vị trí OA. a) Khi quay bánh lái ngược chiều kim đồng hồ ( Hình 1), cứ mỗi giây,
Một chiếc bánh lái tàu có thể quay theo cả hai chiều. Trong Hình 1 và Hình 2, lúc đầu thanh OM ở vị trí OA.
a) Khi quay bánh lái ngược chiều kim đồng hồ ( Hình 1), cứ mỗi giây, bánh lái quay một góc \( {60^0}\). Bảng dưới đây cho ta góc quay \(\alpha \)của thanh OM sau t giây kể từ lúc bắt đầu quay. Thay dấu ? bằng số đo thích hơp.


b) Nếu bánh lái được quay theo chiều ngược lại, nghĩa là quay cùng chiều kim đồng hồ ( Hình 2) với cùng tốc độ như trên, người ta ghi -\({60^ \circ }\)để chỉ góc mà thanh OM quay được sau mỗi giây. Bảng dưới đây cho ta góc quay \(\alpha \)của thanh OM sau t giây kể từ lúc bắt đầu quay. Thay dấu ? bằng số đo thích hợp.


Phương pháp giải:
Quy ước chiều quay ngược chiều kim đồng hồ là chiều dương và chiều quay cùng chiều kim đồng hồ là chiều âm.
Lời giải chi tiết:
a)
Thời gian t (giây) | 1 | 2 | 3 | 4 | 5 | 6 |
Góc quay \(\alpha \) | \({60^ \circ }\) | \({120^ \circ }\) | \({180^ \circ }\) | \({240^ \circ }\) | \({300^ \circ }\) | \({360^ \circ }\) |
b)
Thời gian t (giây) | 1 | 2 | 3 | 4 | 5 | 6 |
Góc quay \(\alpha \) | -\({60^ \circ }\) | -\({120^ \circ }\) | -\({180^ \circ }\) | -\({240^ \circ }\) | -\({300^ \circ }\) | -\({360^ \circ }\) |
Cho \(\widehat {MON} = {60^ \circ }\). Xác định số đo của các góc lượng giác được biểu diễn trong Hình 6 và viết công thức tổng quát của số đo góc lượng giác (OM,ON).

Phương pháp giải:
- Quy ước chiều quay ngược chiều kim đồng hồ là chiều dương và chiều quay cùng chiều kim đồng hồ là chiều âm.
- Số đo của các góc lượng giác có cùng tia đầu Oa, và tia cuối Ob sai khác nhau một bội nguyên của \({360^ \circ }\)nên có công thức tổng quát là: \((Oa,Ob) = {\alpha ^ \circ } + k{360^ \circ }(k \in \mathbb{Z}),\)với \({\alpha ^ \circ }\) là số đo của một góc lượng giác bất kì có tia đầu Oa và tia cuối Ob.
Lời giải chi tiết:
a) Số đo của góc lượng giác (OM,ON) trong Hình 6 là \({60^ \circ }\)
b) Số đo của góc lượng giác (OM,ON) trong Hình 6 là \({60^ \circ } + {2.360^ \circ } = {780^ \circ }\)
c) Số đo của góc lượng giác (OM,ON) trong Hình 6 là \(\frac{5}{6}.( - {360^ \circ }) = - {300^ \circ }\)
Công thức tổng quát của số đo góc lượng giác \((OM,ON) = {60^ \circ } + k{360^ \circ }(k \in \mathbb{Z})\)
Trong khoảng thời gian từ 0 giờ đến 2 giờ 15 phút, kim phút quét một góc lượng giác là bao nhiêu độ?
Phương pháp giải:
- Quy ước chiều quay ngược chiều kim đồng hồ là chiều dương và chiều quay cùng chiều kim đồng hồ là chiều âm.
Lời giải chi tiết:
Đổi 2 giờ 15 phút = \(\frac{9}{4}\)giờ.
Trong khoảng thời gian từ 0 giờ đến 2 giờ 15 phút, kim phút quét một góc lượng giác là \(\frac{9}{4}.( - {360^ \circ }) = - {810^ \circ }\)
Cho Hình 7.
a) Xác định số đo các góc lượng giác (Oa,Ob), (Ob,Oc) và (Oa,Oc).
b) Nhận xét về mối liên hệ giữa ba số đo góc này.

Phương pháp giải:
- Quy ước chiều quay ngược chiều kim đồng hồ là chiều dương và chiều quay cùng chiều kim đồng hồ là chiều âm.
Lời giải chi tiết:
a) Số đo của góc lượng giác (Oa,Ob) trong Hình 7 là \({135^ \circ } + n{.360^ \circ },(n \in \mathbb{Z})\)
Số đo của góc lượng giác (Ob,Oc) trong Hình 7 là \( - {80^ \circ } + m{.360^ \circ },(m \in \mathbb{Z})\)
Số đo của góc lượng giác (Oa,Oc) trong Hình 7 là \({415^ \circ } + k{.360^ \circ },(k \in \mathbb{Z})\)
b)
\(\begin{array}{l}(Oa,Ob) + (Ob,Oc) = {135^ \circ } + n{.360^ \circ } + ( - {80^ \circ }) + m{.360^ \circ }\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = {55^ \circ } + (n + m){.360^ \circ } = {415^ \circ } + (n + m - 1){.360^ \circ }\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = {415^ \circ } + k{.360^ \circ } = (Oa,Oc)\end{array}\)
với \(k = n + m - 1\,;n,m,k \in \mathbb{Z}\)
Trong Hình 8, chiếc quạt có ba cánh được phân bố đều nhau. Viết công thức tổng quát số đo của góc lượng giác (Ox,ON) và (Ox,OP).

Phương pháp giải:
- Số đo của các góc lượng giác có cùng tia đầu Oa, và tia cuối Ob sai khác nhau một bội nguyên của \({360^ \circ }\)nên có công thức tổng quát là: \((Oa,Ob) = {\alpha ^ \circ } + k{360^ \circ }(k \in \mathbb{Z}),\)với \({\alpha ^ \circ }\) là số đo của một góc lượng giác bất kì có tia đầu Oa và tia cuối Ob.
- Quy ước chiều quay ngược chiều kim đồng hồ là chiều dương và chiều quay cùng chiều kim đồng hồ là chiều âm.
Lời giải chi tiết:
Công thức tổng quát số đo của góc lượng giác \((Ox,ON) = {70^ \circ } + k{360^ \circ }(k \in \mathbb{Z})\)
Công thức tổng quát số đo của góc lượng giác \((Ox,OP) = (Ox,OM) + (OM,OP) = - {50^ \circ } + ( - {120^ \circ }) + m{360^ \circ } = - {170^ \circ } + m{360^ \circ }\,\,\,\,,(m \in \mathbb{Z})\)
Mục 1 của chương trình Toán 11 tập 1 Chân trời sáng tạo tập trung vào việc giới thiệu về giới hạn của hàm số. Đây là một khái niệm nền tảng quan trọng, mở đầu cho chương trình Giải tích. Việc nắm vững kiến thức về giới hạn sẽ giúp học sinh hiểu sâu hơn về các khái niệm tiếp theo như đạo hàm, tích phân.
Dưới đây là lời giải chi tiết cho từng bài tập trong mục 1 trang 7, 8, 9 SGK Toán 11 tập 1 Chân trời sáng tạo:
Nội dung bài tập: Cho hàm số f(x) = 2x + 1. Tính giới hạn của f(x) khi x tiến tới 2.
Lời giải:
Nội dung bài tập: Tính giới hạn của hàm số g(x) = (x^2 - 1) / (x - 1) khi x tiến tới 1.
Lời giải:
Ta có thể phân tích tử số thành (x - 1)(x + 1). Do đó:
Nội dung bài tập: Cho hàm số h(x) = 1/x. Tính giới hạn của h(x) khi x tiến tới 0 từ bên phải và bên trái.
Lời giải:
Khi x tiến tới 0 từ bên phải (x > 0), 1/x tiến tới +∞.
Khi x tiến tới 0 từ bên trái (x < 0), 1/x tiến tới -∞.
Tusach.vn hy vọng với lời giải chi tiết và hướng dẫn trên, các em sẽ hiểu rõ hơn về mục 1 trang 7, 8, 9 SGK Toán 11 tập 1 Chân trời sáng tạo. Chúc các em học tập tốt!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập