Bài 2 trang 73 SGK Toán 11 Tập 2 thuộc chương trình Toán 11 Chân trời sáng tạo, tập trung vào việc rèn luyện kỹ năng giải bài toán liên quan đến đạo hàm. Bài tập này yêu cầu học sinh vận dụng kiến thức đã học để tính đạo hàm của hàm số và giải các bài toán thực tế.
tusach.vn cung cấp lời giải chi tiết, dễ hiểu, giúp học sinh nắm vững kiến thức và tự tin giải các bài tập tương tự.
Cho tam giác đều (ABC) cạnh (a), (I) là trung điểm của (BC), (D) là điểm đối xứng với (A) qua (I).
Đề bài
Cho tam giác đều \(ABC\) cạnh \(a\), \(I\) là trung điểm của \(BC\), \(D\) là điểm đối xứng với \(A\) qua \(I\). Vẽ đoạn thẳng \(S{\rm{D}}\) có độ dài bằng \(\frac{{a\sqrt 6 }}{2}\) và vuông góc với \(\left( {ABC} \right)\). Chứng minh rằng:
a) \(\left( {SBC} \right) \bot \left( {SAD} \right)\);
b) \(\left( {SAB} \right) \bot \left( {SAC} \right)\).
Phương pháp giải - Xem chi tiết
Cách chứng minh hai mặt phẳng vuông góc: chứng minh mặt phẳng này chứa một đường thẳng vuông góc với mặt phẳng.
Lời giải chi tiết

a) \(ABDC\) là hình thoi \( \Rightarrow A{\rm{D}} \bot BC\)
\(S{\rm{D}} \bot \left( {ABC} \right) \Rightarrow S{\rm{D}} \bot BC\)
\(\left. \begin{array}{l} \Rightarrow BC \bot \left( {SA{\rm{D}}} \right)\\BC \subset \left( {SBC} \right)\end{array} \right\} \Rightarrow \left( {SBC} \right) \bot \left( {SA{\rm{D}}} \right)\)
b) Kẻ \(IJ \bot SA\left( {J \in SA} \right)\).
\(\Delta ABC\) đều \( \Rightarrow AI = \frac{{a\sqrt 3 }}{2} \Rightarrow A{\rm{D}} = 2AI = a\sqrt 3 \)
\(\Delta SAD\) vuông tại \(D\) \( \Rightarrow S{\rm{A}} = \sqrt {S{D^2} + A{{\rm{D}}^2}} = \frac{{3a\sqrt 2 }}{2}\)
Xét \(\Delta SAD\) và \(\Delta IAJ\)có:
\(\begin{array}{l}\widehat {SDA} = \widehat {IJA} = {90^0}\\\widehat A\,\,chung\end{array}\)
Suy ra \(\Delta SAD\,\infty \,\Delta IAJ\,(g.g) \Rightarrow \frac{{JI}}{{SD}} = \frac{{AI}}{{SA}} \Rightarrow JI = \frac{{SD.AI}}{{SA}} = \frac{{\frac{{a\sqrt 6 }}{2}.\frac{{a\sqrt 3 }}{2}}}{{\frac{{3a\sqrt 2 }}{2}}} = \frac{a}{2}\)
Nên \(JI = \frac{{BC}}{2}\)
Tam giác \(BCJ\) có \(IJ\) là trung tuyến và \(IJ = \frac{1}{2}BC\)
Vậy tam giác \(BCJ\) vuông tại \(J \Rightarrow BJ \bot JC\)
\(\begin{array}{l}\left. \begin{array}{l}BC \bot \left( {SA{\rm{D}}} \right) \Rightarrow BC \bot SA\\IJ \bot SA\end{array} \right\} \Rightarrow SA \bot \left( {BCJ} \right)\\\left. \begin{array}{l} \Rightarrow SA \bot BJ\\BJ \bot JC\end{array} \right\} \Rightarrow BJ \bot \left( {SAC} \right)\end{array}\)
Mà \(BJ \subset \left( {SAB} \right)\)
Vậy \(\left( {SAB} \right) \bot \left( {SAC} \right)\).
Bài 2 trang 73 SGK Toán 11 Tập 2 Chân trời sáng tạo là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm. Để giải bài tập này một cách hiệu quả, chúng ta cần nắm vững các công thức và quy tắc tính đạo hàm đã học.
Bài tập yêu cầu tính đạo hàm của các hàm số sau:
a) f(x) = x3 - 3x2 + 2x - 5
Áp dụng quy tắc đạo hàm của tổng và hiệu, ta có:
f'(x) = 3x2 - 6x + 2
b) g(x) = (x2 + 1)(x - 2)
Áp dụng quy tắc đạo hàm của tích, ta có:
g'(x) = (2x)(x - 2) + (x2 + 1)(1) = 2x2 - 4x + x2 + 1 = 3x2 - 4x + 1
c) h(x) = sin(2x) + cos(x)
Áp dụng quy tắc đạo hàm của tổng và các đạo hàm cơ bản, ta có:
h'(x) = cos(2x) * 2 - sin(x) = 2cos(2x) - sin(x)
Để rèn luyện thêm kỹ năng giải bài tập về đạo hàm, bạn có thể tham khảo các bài tập sau:
Bài 2 trang 73 SGK Toán 11 Tập 2 Chân trời sáng tạo là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm. Bằng cách nắm vững các công thức và quy tắc, cùng với việc luyện tập thường xuyên, bạn có thể tự tin giải quyết các bài tập tương tự.
| Hàm số | Đạo hàm |
|---|---|
| f(x) = x3 - 3x2 + 2x - 5 | f'(x) = 3x2 - 6x + 2 |
| g(x) = (x2 + 1)(x - 2) | g'(x) = 3x2 - 4x + 1 |
| h(x) = sin(2x) + cos(x) | h'(x) = 2cos(2x) - sin(x) |
Chúc các bạn học tốt!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập