Chào mừng bạn đến với tusach.vn, nơi cung cấp lời giải chi tiết và chính xác cho các bài tập trong sách giáo khoa Toán 11 tập 1 - Cánh Diều. Chúng tôi hiểu rằng việc tự học đôi khi gặp khó khăn, vì vậy chúng tôi luôn cố gắng mang đến những giải pháp tốt nhất để giúp bạn học tập hiệu quả.
Bài viết này sẽ tập trung vào việc giải mục 5 trang 29, 30, giúp bạn hiểu rõ các khái niệm và phương pháp giải bài tập liên quan.
Xét tập hợp (E = Rbackslash left{ {kpi |k in mathbb{Z}} right}). Với mỗi số thực (x in E), hãy nêu định nghĩ (cot x)
Xét tập hợp \(E = R\backslash \left\{ {k\pi |k \in \mathbb{Z}} \right\}\). Với mỗi số thực \(x \in E\), hãy nêu định nghĩ \(\cot x\)
Phương pháp giải:
Sử dụng công thức tính \(\cot x\)
Lời giải chi tiết:
\(\cot x = \frac{{\cos x}}{{\sin x}}\)
Cho hàm số \(y = \cot x\)
a) Tìm giá trị y tương ứng với giá trị của x trong bảng sau:
x | \(\frac{\pi }{6}\) | \(\frac{\pi }{4}\) | \(\frac{\pi }{2}\) | \(\frac{{3\pi }}{4}\) | \(\frac{{5\pi }}{6}\) |
\(y = \cot x\) | ? | ? | ? | ? | ? |
b) Trong mặt phẳng tọa độ Oxy, hãy biểu diễn các điểm (x; y) trong bảng giá trị ở câu a. Bằng cách làm tương tự, lấy nhiều điểm (x; cotx) với \(x \in \left( {0;\pi } \right)\) và nối lại ta được đồ thị hàm số \(y = \cot x\) trên khoảng \(\left( {0;\pi } \right)\) (Hình 31)
c) Làm tương tự như trên đối với các khoảng \(\left( {\pi ;2\pi } \right),\left( { - \pi ;0} \right),\left( { - 2\pi ; - \pi } \right),....\)ta có đồ thị hàm số \(y = \cot x\)trên E được biểu diễn ở Hình 32.

Phương pháp giải:
Sử dụng công thức tính cotang
Lời giải chi tiết:
a)
x | \(\frac{\pi }{6}\) | \(\frac{\pi }{4}\) | \(\frac{\pi }{2}\) | \(\frac{{3\pi }}{4}\) | \(\frac{{5\pi }}{6}\) |
\(y = \cot x\) | \(\sqrt 3 \) | 1 | 0 | -1 | \( - \sqrt 3 \) |
b) Trong mặt phẳng tọa độ Oxy, hãy biểu diễn các điểm (x; y) trong bảng giá trị ở câu a. Bằng cách làm tương tự, lấy nhiều điểm (x; cotx) với \(x \in \left( {0;\pi } \right)\) và nối lại ta được đồ thị hàm số \(y = \cot x\) trên khoảng \(\left( {0;\pi } \right)\) (Hình 31)
c) Làm tương tự như trên đối với các khoảng \(\left( {\pi ;2\pi } \right),\left( { - \pi ;0} \right),\left( { - 2\pi ; - \pi } \right),....\)ta có đồ thị hàm số \(y = \cot x\)trên E được biểu diễn ở Hình 32.

Quan sát đồ thị hàm số \(y = \cot x\) ở Hình 32.

a) Nêu tập giá trị của hàm số \(y = \cot x\)
b) Gốc tọa độ có là tâm đối xứng của đồ thị hàm số không? Từ đó kết luận tính chẵn, lẻ của hàm số \(y = \cot x\)
c) Bằng cách dịch chuyển đồ thị hàm số \(y = \cot x\) trên khoảng \(\left( {0;\pi } \right)\) song song với trục hoành sang phải theo đoạn có độ dài \(\pi \), ta nhận được \(y = \cot x\) trên khoảng \(\left( {\pi ;2\pi } \right)\) hay không? Hàm số \(y = \cot x\) có tuần hoàn hay không?
d) Tìm khoảng đồng biến, nghịch biến của hàm số \(y = \cot x\)
Phương pháp giải:
Sử dụng định nghĩa về hàm số cotang

Lời giải chi tiết:
a) Tập giá trị của hàm số \(y = \cot x\)là R
b) Gốc tọa độ là tâm đối xứng của đồ thị hàm số
Hàm số \(y = \cot x\)là hàm số lẻ
c) Bằng cách dịch chuyển đồ thị hàm số \(y = \cot x\) trên khoảng \(\left( {0;\pi } \right)\) song song với trục hoành sang phải theo đoạn có độ dài \(\pi \), ta nhận được \(y = \cot x\) trên khoảng \(\left( {\pi ;2\pi } \right)\)
Hàm số \(y = \cot x\) có tuần hoàn
d) Hàm số \(y = \cot x\)nghịch biến trên mỗi khoảng \(\left( {k\pi ;\pi + k\pi } \right),k \in Z\)
Với mỗi số thực m, tìm số giao điểm của đường thẳng y=m với đồ thị hàm số \(y = \cot x\)trên khoảng \(\left( {0;\pi } \right)\)
Phương pháp giải:
Sử dụng đồ thị của hàm số \(y = \cot x\)
Lời giải chi tiết:

Theo đồ thì của hàm số \(y = \tan x\), số giao điểm của đường thẳng y=m với đồ thị hàm số \(y = \cot x\)trên khoảng \(\left( {0;\pi } \right)\) là 1
Mục 5 trong SGK Toán 11 tập 1 - Cánh Diều thường xoay quanh các chủ đề về hàm số bậc hai, bao gồm việc xác định các yếu tố của hàm số, vẽ đồ thị, và giải các bài toán liên quan đến hàm số này. Việc nắm vững kiến thức về hàm số bậc hai là nền tảng quan trọng cho các chương trình học toán ở các lớp trên.
Dưới đây là giải chi tiết một số bài tập tiêu biểu trong Mục 5 trang 29, 30 SGK Toán 11 tập 1 - Cánh Diều:
Giải: Trong hàm số y = 2x2 - 5x + 3, ta có:
Giải: Tọa độ đỉnh của parabol y = ax2 + bx + c được tính bởi công thức:
Trong trường hợp này, a = 1, b = -4, c = 3. Do đó:
Vậy tọa độ đỉnh của parabol là I(2; -1).
Giải: Để vẽ đồ thị hàm số y = x2 - 2x - 1, ta thực hiện các bước sau:
Hy vọng bài viết này đã giúp bạn hiểu rõ hơn về cách giải mục 5 trang 29, 30 SGK Toán 11 tập 1 - Cánh Diều. Chúc bạn học tập tốt!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập