Bài 6 trang 94 SGK Toán 11 tập 2 thuộc chương trình Giải tích, tập trung vào việc ứng dụng đạo hàm để khảo sát hàm số. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm, điểm cực trị, và khoảng đơn điệu của hàm số để giải quyết các bài toán cụ thể.
tusach.vn cung cấp lời giải chi tiết, dễ hiểu, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải bài tập Toán 11 hiệu quả.
Cho hình chóp \(S.ABC\) có \(SA \bot \left( {ABC} \right)\). Gọi \(\alpha \) là số đo của góc nhị diện \(\left[ {A,BC,S} \right]\).
Đề bài
Cho hình chóp \(S.ABC\) có \(SA \bot \left( {ABC} \right)\). Gọi \(\alpha \) là số đo của góc nhị diện \(\left[ {A,BC,S} \right]\). Chứng minh rằng tỉ số diện tích của hai tam giác \(ABC\) và \(SBC\) bằng \(\cos \alpha \).
Phương pháp giải - Xem chi tiết
‒ Cách xác định góc nhị diện \(\left[ {{P_1},d,{Q_1}} \right]\)
Bước 1: Xác định \(c = \left( {{P_1}} \right) \cap \left( {{Q_1}} \right)\).
Bước 2: Tìm mặt phẳng \(\left( R \right) \supset c\).
Bước 3: Tìm \(p = \left( R \right) \cap \left( {{P_1}} \right),q = \left( R \right) \cap \left( {{Q_1}} \right),O = p \cap q,M \in p,N \in q\).
Khi đó \(\left[ {{P_1},d,{Q_1}} \right] = \widehat {MON}\).
Lời giải chi tiết

Kẻ \(AH \bot BC\left( {H \in BC} \right)\)
\(SA \bot \left( {ABC} \right) \Rightarrow SA \bot BC\)
\( \Rightarrow BC \bot \left( {SAH} \right) \Rightarrow BC \bot SH\)
Vậy \(\widehat {SHA}\) là góc phẳng nhị diện của góc nhị diện \(\left[ {A,BC,S} \right]\)
\( \Rightarrow \widehat {SHA} = \alpha \)
\(\begin{array}{l}{S_{\Delta ABC}} = \frac{1}{2}BC.AH,{S_{\Delta SBC}} = \frac{1}{2}BC.SH\\ \Rightarrow \frac{{{S_{\Delta ABC}}}}{{{S_{\Delta SBC}}}} = \frac{{\frac{1}{2}BC.AH}}{{\frac{1}{2}BC.SH}} = \frac{{AH}}{{SH}} = \cos \widehat {SHA} = \cos \alpha \end{array}\)
Bài 6 trang 94 SGK Toán 11 tập 2 - Cánh Diều là một bài tập quan trọng trong chương trình học, giúp học sinh củng cố kiến thức về đạo hàm và ứng dụng của nó trong việc khảo sát hàm số. Dưới đây là lời giải chi tiết và hướng dẫn giải bài tập này:
Bài tập yêu cầu khảo sát hàm số y = f(x) bằng cách xác định:
1. Tập xác định: Hàm số y = x^3 - 3x^2 + 2 có tập xác định là R (tập hợp tất cả các số thực).
2. Đạo hàm: y' = 3x^2 - 6x
3. Điểm cực trị: Giải phương trình y' = 0:
3x^2 - 6x = 0
3x(x - 2) = 0
=> x = 0 hoặc x = 2
Xét dấu y':
Vậy hàm số có cực đại tại x = 0, y(0) = 2 và cực tiểu tại x = 2, y(2) = -2.
4. Khoảng đơn điệu:
5. Giới hạn:
6. Vẽ đồ thị: Dựa vào các thông tin trên, ta có thể vẽ được đồ thị hàm số y = x^3 - 3x^2 + 2.
tusach.vn hy vọng với lời giải chi tiết và hướng dẫn trên, các bạn học sinh có thể tự tin giải Bài 6 trang 94 SGK Toán 11 tập 2 - Cánh Diều và đạt kết quả tốt trong môn học. Chúc các bạn học tập tốt!
| Khái niệm | Giải thích |
|---|---|
| Đạo hàm | Tốc độ thay đổi của hàm số tại một điểm. |
| Điểm cực trị | Điểm mà tại đó hàm số đạt giá trị lớn nhất hoặc nhỏ nhất trong một khoảng nào đó. |
| Khoảng đơn điệu | Khoảng mà trên đó hàm số luôn tăng hoặc luôn giảm. |
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập