Bài 13 thuộc chương 1: Hàm số lượng giác và đồ thị của hàm số lượng giác trong SGK Toán 11 tập 1 - Cánh Diều. Bài học này tập trung vào việc giải các bài toán liên quan đến hàm số lượng giác, đặc biệt là các bài toán về tìm tập xác định, tập giá trị, và tính đơn điệu của hàm số.
tusach.vn cung cấp lời giải chi tiết, dễ hiểu, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán hiệu quả.
Hằng ngày, mực nước của một con kênh lên xuống theo thủy triều. Độ sâu h (m) của mực nước trong kênh tính theo thời gian t (giờ) trong một ngày (left( {0 le t < 24} right)) cho bởi công thức (h = 3cos left( {frac{{pi t}}{6} + 1} right) + 12). Tìm t để độ sâu của mực nước là
Đề bài
Hằng ngày, mực nước của một con kênh lên xuống theo thủy triều. Độ sâu h (m) của mực nước trong kênh tính theo thời gian t (giờ) trong một ngày \(\left( {0 \le t < 24} \right)\) cho bởi công thức \(h = 3\cos \left( {\frac{{\pi t}}{6} + 1} \right) + 12\). Tìm t để độ sâu của mực nước là
a) 15m
b) 9m
c) 10,5m
Phương pháp giải - Xem chi tiết
Sử dụng công thức nghiệm của phương trình hàm số cos
Lời giải chi tiết
a) Để độ sâu của mực nước là 15 m thì: \[ h = 3\cos\left(\frac{\pi}{6} + 1\right) + 12 = 15 \] \[ \Leftrightarrow \cos\left(\frac{\pi}{6} + 1\right) = 1 \] \[ \Leftrightarrow \frac{\pi}{6} + 1 = k2\pi \quad (k \in \mathbb{Z}) \] \[ \Leftrightarrow t = -\frac{6}{\pi} + 12k \quad (k \in \mathbb{Z}) \] Do \(0 \leq t < 24\) nên \(0 \leq -\frac{6}{\pi} + 12k < 24\) \[ \Leftrightarrow \frac{6}{\pi} \leq 12k < 24 + \frac{6}{\pi} \] \[ \Leftrightarrow \frac{1}{2\pi} \leq k < 2 + \frac{1}{2\pi} \] Mà \(k \in \mathbb{Z}\) nên \(k \in \{1; 2\}\).
Với \(k = 1\) thì \(t = -\frac{6}{\pi} + 12.1 \approx 10,09\) (giờ);
Với \(k = 2\) thì \(t = -\frac{6}{\pi} + 12.2 \approx 22,09\) (giờ).
Vậy lúc 10,09 giờ và 22,09 giờ thì mực nước có độ sâu là 15 m.
b) Để độ sâu của mực nước là 9 m thì:
\[h = 3\cos\left(\frac{\pi}{6} + 1\right) + 12 = 9\]
\[\Leftrightarrow \cos\left(\frac{\pi}{6} + 1\right) = -1\]
\[\Leftrightarrow \frac{\pi}{6} + 1 = \pi + k2\pi \quad (k \in \mathbb{Z})\]
\[\Leftrightarrow t = 6 - \frac{6}{\pi} + 12k \quad (k \in \mathbb{Z})\]
Do \(0 \leq t < 24\) nên \(0 \leq 6 - \frac{6}{\pi} + 12k < 24\)
\[\Leftrightarrow -6 + \frac{6}{\pi} \leq 12k < 18 + \frac{6}{\pi}\]
\[\Leftrightarrow -\frac{1}{2} + \frac{1}{2\pi} \leq k < \frac{3}{2} + \frac{1}{2\pi}\]
Mà \(k \in \mathbb{Z}\) nên \(k \in \{0; 1\}\).
Với \(k = 0\) thì \(t = 6 - \frac{6}{\pi} + 12.0 \approx 4,09\) (giờ);
Với \(k = 1\) thì \(t = 6 - \frac{6}{\pi} + 12.1 \approx 16,09\) (giờ).
Vậy lúc 4,09 giờ và 16,09 giờ thì mực nước có độ sâu là 9 m.
c) Để độ sâu của mực nước là $10,5 \mathrm{~m}$ thì:$$\begin{aligned}& h=3 \cos \left(\frac{\pi t}{6}+1\right)+12=10,5 \\& \Leftrightarrow \cos \left(\frac{\pi t}{6}+1\right)=-\frac{1}{2} \\& \Leftrightarrow\left[\begin{array}{l}\frac{\pi \mathrm{t}}{6}+1=\frac{2 \pi}{3}+\mathrm{k} 2 \pi \\\frac{\pi \mathrm{t}}{6}+1=-\frac{2 \pi}{3}+\mathrm{k} 2 \pi\end{array} \quad(\mathrm{k} \in \mathbb{Z})\right. \\& \Leftrightarrow\left[\begin{array}{l}t=4-\frac{6}{\pi}+12 k \\t=-4-\frac{6}{\pi}+12 k(2)\end{array}(\mathrm{k} \in \mathbb{Z})\right. \\&\end{aligned}$$
- Do $0 \leq \mathrm{t}<24$ nên từ (1) ta có: $0 \leq 4-\frac{6}{\pi}+12 k<24$$$\begin{aligned}& \Leftrightarrow-4+\frac{6}{\pi} \leq 12 k<20+\frac{6}{\pi} \\& \Leftrightarrow-\frac{1}{3}+\frac{1}{2 \pi} \leq k<\frac{5}{3}+\frac{1}{2 \pi}\end{aligned}$$
Mà $k \in Z$ nên $k \in\{0 ; 1\}$.Với k $=0$ thì $t=4-\frac{6}{\pi}+12.0 \approx 2,09$ (giờ);Với k $=1$ thì $t=4-\frac{6}{\pi}+12.1 \approx 14,09$ (giờ).- Do $0 \leq \mathrm{t}<24$ nên từ (2) ta có: $0 \leq-4-\frac{6}{\pi}+12 k<24$$$\begin{aligned}& \Leftrightarrow 4+\frac{6}{\pi} \leq 12 k<28+\frac{6}{\pi} \\& \Leftrightarrow \frac{1}{3}+\frac{1}{2 \pi} \leq k<\frac{7}{3}+\frac{1}{2 \pi}\end{aligned}$$
Mà $k \in \mathbb{Z}$ nên $k \in\{1 ; 2\}$.Với k $=1$ thì $t=-4-\frac{6}{\pi}+12.1 \approx 6,09$ (giờ);Với k $=2$ thì $t=-4-\frac{6}{\pi}+12.2 \approx 18,09$ (giờ).Vậy lúc 2,09 giờ, 6,09 giờ, 14,09 giờ và 18,09 giờ thì mực nước có độ sâu là $10,5 \mathrm{~m}$.
Bài 13 trang 41 SGK Toán 11 tập 1 - Cánh Diều là một phần quan trọng trong chương trình học Toán 11, tập trung vào việc củng cố kiến thức về hàm số lượng giác. Bài tập này yêu cầu học sinh vận dụng các kiến thức đã học để giải quyết các bài toán thực tế, từ đó nâng cao khả năng tư duy và giải quyết vấn đề.
Bài 13 thường bao gồm các dạng bài tập sau:
Dưới đây là lời giải chi tiết cho từng bài tập trong Bài 13:
(Nội dung bài 1 và lời giải chi tiết)
(Nội dung bài 2 và lời giải chi tiết)
(Nội dung bài 3 và lời giải chi tiết)
Để giải các bài tập về hàm số lượng giác một cách hiệu quả, bạn có thể tham khảo các mẹo sau:
tusach.vn là một website học tập uy tín, cung cấp đầy đủ các tài liệu học tập Toán 11, bao gồm:
Hãy truy cập tusach.vn ngay hôm nay để học Toán 11 hiệu quả và đạt kết quả cao!
| Hàm số | Tập xác định | Tập giá trị |
|---|---|---|
| y = sin(x) | R | [-1, 1] |
| y = cos(x) | R | [-1, 1] |
Chúc các bạn học tập tốt!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập