Bài 2 trang 79 SGK Toán 11 Tập 1 - Cánh Diều yêu cầu học sinh vận dụng kiến thức về hàm số bậc hai, tập xác định, tập giá trị, và các tính chất của hàm số để giải các bài tập cụ thể.
Tusach.vn cung cấp lời giải chi tiết, dễ hiểu, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải bài tập Toán 11 hiệu quả.
Tính các giới hạn sau: a) (lim frac{{2{n^2} + 6n + 1}}{{8{n^2} + 5}}) b) (lim frac{{4{n^2} - 3n + 1}}{{ - 3{n^3} + 5{n^2} - 2}}); c) (lim frac{{sqrt {4{n^2} - n + 3} }}{{8n - 5}}); d) (lim left( {4 - frac{{{2^{n + 1}}}}{{{3^n}}}} right)) e) (lim frac{{{{4.5}^n} + {2^{n + 2}}}}{{{{6.5}^n}}}) g) (lim frac{{2 + frac{4}{{{n^3}}}}}{{{6^n}}}).
Đề bài
Tính các giới hạn sau:
a) \(\lim \frac{{2{n^2} + 6n + 1}}{{8{n^2} + 5}}\)
b) \(\lim \frac{{4{n^2} - 3n + 1}}{{ - 3{n^3} + 5{n^2} - 2}}\);
c) \(\lim \frac{{\sqrt {4{n^2} - n + 3} }}{{8n - 5}}\);
d) \(\lim \left( {4 - \frac{{{2^{n + 1}}}}{{{3^n}}}} \right)\)
e) \(\lim \frac{{{{4.5}^n} + {2^{n + 2}}}}{{{{6.5}^n}}}\)
g) \(\lim \frac{{2 + \frac{4}{{{n^3}}}}}{{{6^n}}}\).
Phương pháp giải - Xem chi tiết
Sử dụng phương pháp:
Chia cả tử và mẫu cho \({x^n}\), với n là số mũ cao nhất trong biểu thức đối với câu a, b, c.
Chia cả tử và mẫu cho \({a^n}\), với a là cơ số lớn nhất trong biểu thức đối với câu d, e.
Sử dụng giới hạn của một tích đối với câu g.
Lời giải chi tiết
a) \(\lim \frac{{2{n^2} + 6n + 1}}{{8{n^2} + 5}} = \lim \frac{{{n^2}\left( {2 + \frac{6}{n} + \frac{1}{{{n^2}}}} \right)}}{{{n^2}\left( {8 + \frac{5}{{{n^2}}}} \right)}} = \lim \frac{{2 + \frac{6}{n} + \frac{1}{n}}}{{8 + \frac{5}{n}}} = \frac{2}{8} = \frac{1}{4}\)
b) \(\lim \frac{{4{n^2} - 3n + 1}}{{ - 3{n^3} + 6{n^2} - 2}} = \lim \frac{{{n^3}\left( {\frac{4}{n} - \frac{3}{{{n^2}}} + \frac{1}{{{n^3}}}} \right)}}{{{n^3}\left( { - 3 + \frac{6}{n} - \frac{2}{{{n^3}}}} \right)}} = \lim \frac{{\frac{4}{n} - \frac{3}{{{n^2}}} + \frac{1}{{{n^3}}}}}{{ - 3 + \frac{6}{n} - \frac{2}{{{n^3}}}}} = \frac{{0 - 0 + 0}}{{ - 3 + 0 - 0}} = 0\).
c) \(\lim \frac{{\sqrt {4{n^2} - n + 3} }}{{8n - 5}} = \lim \frac{{n\sqrt {4 - \frac{1}{n} + \frac{3}{{{n^2}}}} }}{{n\left( {8 - \frac{5}{n}} \right)}} = \frac{{\sqrt {4 - 0 + 0} }}{{8 - 0}} = \frac{2}{8} = \frac{1}{4}\).
d) \(\lim \left( {4 - \frac{{{2^{{\rm{n}} + 1}}}}{{{3^{\rm{n}}}}}} \right) = \lim \left( {4 - 2 \cdot {{\left( {\frac{2}{3}} \right)}^{\rm{n}}}} \right) = 4 - 2.0 = 4\).
e) \(\lim \frac{{{{4.5}^{\rm{n}}} + {2^{{\rm{n}} + 2}}}}{{{{6.5}^{\rm{n}}}}} = \lim \frac{{{{4.5}^{\rm{n}}} + {2^2}{{.2}^{\rm{n}}}}}{{{{6.5}^{\rm{n}}}}} = \lim \frac{{{5^n}.\left[ {4 + 4.{{\left( {\frac{2}{5}} \right)}^{\rm{n}}}} \right]}}{{{{6.5}^n}}} = \lim \frac{{4 + 4.{{\left( {\frac{2}{5}} \right)}^{\rm{n}}}}}{6} = \frac{{4 + 4.0}}{6} = \frac{2}{3}\).
g) \(\lim \frac{{2 + \frac{4}{{{n^3}}}}}{{{6^{\rm{n}}}}} = \lim \left( {2 + \frac{4}{{{{\rm{n}}^3}}}} \right).\lim {\left( {\frac{1}{6}} \right)^{\rm{n}}} = \left( {2 + 0} \right).0 = 0\).
Bài 2 trang 79 SGK Toán 11 Tập 1 - Cánh Diều thuộc chương trình học Toán 11, tập trung vào việc giải tích hàm số bậc hai. Để giải quyết bài tập này, học sinh cần nắm vững các khái niệm cơ bản như tập xác định, tập giá trị, điểm thuộc đồ thị hàm số, và cách xác định các yếu tố của hàm số bậc hai.
Bài tập yêu cầu học sinh thực hiện các nhiệm vụ sau:
Để giúp học sinh hiểu rõ hơn về cách giải bài tập này, Tusach.vn xin trình bày lời giải chi tiết như sau:
Ví dụ: Xét hàm số y = x2 - 4x + 3
Để giải nhanh các bài tập về hàm số bậc hai, học sinh nên:
Ngoài SGK Toán 11 Tập 1 - Cánh Diều, học sinh có thể tham khảo thêm các tài liệu sau:
Bài 2 trang 79 SGK Toán 11 Tập 1 - Cánh Diều là một bài tập quan trọng giúp học sinh củng cố kiến thức về hàm số bậc hai. Hy vọng với lời giải chi tiết và hướng dẫn của Tusach.vn, các em học sinh sẽ tự tin hơn khi giải bài tập này và đạt kết quả tốt trong môn Toán.
| Khái niệm | Giải thích |
|---|---|
| Tập xác định | Tập hợp tất cả các giá trị của x mà hàm số có nghĩa. |
| Tập giá trị | Tập hợp tất cả các giá trị của y mà hàm số có thể nhận được. |
| Đỉnh của parabol | Điểm thấp nhất (nếu a > 0) hoặc điểm cao nhất (nếu a < 0) của đồ thị hàm số. |
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập