Bài 3 thuộc chương trình Giải tích lớp 11, tập trung vào việc ôn tập về đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số. Bài tập này yêu cầu học sinh vận dụng kiến thức đã học để giải quyết các bài toán thực tế.
tusach.vn cung cấp lời giải chi tiết, dễ hiểu, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán hiệu quả.
Bảng 15 cho ta bảng tần số ghép nhóm số liệu thống kê chiều cao 40 mẫu cây
Đề bài
Bảng 15 cho ta bảng tần số ghép nhóm số liệu thống kê chiều cao 40 mẫu cây ở một vườn thực vật (đơn vị: centimet).

a) Xác định số trung bình cộng, trung vị, tứ phân vị của mẫu số liệu ghép nhóm trên.
b) Mốt của mẫu số liệu ghép nhóm trên là bao nhiêu?
Phương pháp giải - Xem chi tiết
- Áp dụng các công thức vừa được học để xác định các đại lượng tiêu biểu
Lời giải chi tiết

a) Số trung bình cộng của mẫu số liệu ghép nhóm đã cho là:
\(\overline x = \frac{{35.4 + 45.10 + 55.14 + 65.6 + 75.4 + 85.2}}{{40}} = 55,5\)
⦁ Số phần tử của mẫu là n = 40. Ta có: \(\frac{n}{2} = \frac{{40}}{2} = 20\)
Mà \(14 < 20 < 28\) nên nhóm 3 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 20.
Xét nhóm 3 là nhóm \(\left[ {50;60} \right)\)có \(r = 50,d = 10,{n_3} = 14\) và nhóm 2 là nhóm \(\left[ {40;50} \right)\)có \(c{f_2} = 14\).
Áp dụng công thức, ta có trung vị của mẫu số liệu là:
\({M_e} = 50 + \frac{{20 - 14}}{{14}}.10 \approx 54,29\,(cm)\)
Do đó tứ phân vị thứ hai là \({Q_2} = {M_e} \approx 54,29\,\,(cm)\)
⦁ Ta có: \(\frac{n}{4} = \frac{{40}}{4} = 10\). Mà \(4 < 10 < 14\)nên nhóm 2 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 10.
Xét nhóm 2 là nhóm \(\left[ {40;50} \right)\)có \(s = 40,h = 10,{n_2} = 10\)và nhóm 1 là nhóm \(\left[ {30;40} \right)\)có \(c{f_1} = 4\).
Áp dụng công thức, ta có tứ phân vị thứ nhất là:
\({Q_1} = 40 + \frac{{10 - 4}}{{10}}.10 = 46\,(cm)\)
⦁ Ta có: \(\frac{{3n}}{4} = \frac{{3.40}}{4} = 30\). Mà \(28 < 30 < 34\)nên nhóm 4 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 30.
Xét nhóm 4 là nhóm \(\left[ {60;70} \right)\)có \(t = 60,l = 10,{n_4} = 6\)và nhóm 3 là nhóm \(\left[ {50;60} \right)\)có \(c{f_3} = 28\).
Áp dụng công thức, ta có tứ phân vị thứ ba là:
\({Q_3} = 60 + \frac{{30 - 28}}{6}.10 \approx 63,33\,(cm)\)
b) Nhóm 3 là nhóm \(\left[ {50;60} \right)\)có tần số lớn nhất với \(u = 50,g = 10,{n_3} = 14\)và nhóm 2 có tần số \({n_2} = 10\), nhóm 4 có tần số \({n_4} = 6\).
Áp dụng công thức, ta có mốt của mẫu số liệu là:
\({M_O} = 50 + \frac{{14 - 10}}{{2.14 - 10 - 6}}.10 \approx 53,33\,(cm)\)
Bài 3 trang 14 SGK Toán 11 tập 2 - Cánh Diều là một bài tập quan trọng trong chương trình học, giúp học sinh củng cố kiến thức về đạo hàm và ứng dụng của nó. Dưới đây là lời giải chi tiết và hướng dẫn giải bài tập này:
Bài 3 yêu cầu học sinh thực hiện các nhiệm vụ sau:
Để giải bài tập này, học sinh cần nắm vững các kiến thức sau:
Ví dụ: Xét hàm số y = x3 - 3x2 + 2.
Để giải bài tập này một cách nhanh chóng và hiệu quả, học sinh có thể áp dụng các mẹo sau:
Để rèn luyện kỹ năng giải bài tập về đạo hàm và ứng dụng của đạo hàm, học sinh có thể làm thêm các bài tập tương tự sau:
Bài 3 trang 14 SGK Toán 11 tập 2 - Cánh Diều là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm và ứng dụng của nó. Bằng cách nắm vững các kiến thức cơ bản và áp dụng các mẹo giải nhanh, học sinh có thể giải bài tập này một cách dễ dàng và hiệu quả. tusach.vn hy vọng rằng lời giải chi tiết và hướng dẫn giải bài tập này sẽ giúp ích cho các em trong quá trình học tập.
| Hàm số | Đạo hàm | Điểm cực trị |
|---|---|---|
| y = x3 - 3x2 + 2 | y' = 3x2 - 6x | x = 0, x = 2 |
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập