Bài 18 trang 58 SGK Toán 11 tập 2 - Cánh Diều là bài tập thuộc chương trình Giải tích lớp 11, tập trung vào việc luyện tập các kiến thức về đạo hàm của hàm số.
Tusach.vn cung cấp lời giải chi tiết, dễ hiểu, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải bài tập một cách hiệu quả.
Cho \(a > 0;a \ne 1;{a^{\frac{3}{5}}} = b\)
Đề bài
Cho \(a > 0;a \ne 1;{a^{\frac{3}{5}}} = b\)
a) Viết \({a^6};{a^3}b;\frac{{{a^9}}}{{{b^9}}}\) theo lũy thừa cơ số b
b) Tính \({\log _a}b;\,{\log _a}\left( {{a^2}{b^5}} \right);\,{\log _{\sqrt[5]{a}}}\left( {\frac{a}{b}} \right)\)
Phương pháp giải - Xem chi tiết
Dựa vào tính chất lũy thừa để biến đổi
Lời giải chi tiết
a) \({a^6} = {a^{\frac{{30}}{5}}} = {\left( {{a^{\frac{3}{5}}}} \right)^{10}} = {b^{10}}\)
\({a^3}b = {a^{\frac{{15}}{5}}}b = {\left( {{a^{\frac{3}{5}}}} \right)^5}b = {b^5}.b = {b^6}\)
\(\left( {\frac{{{a^9}}}{{{b^9}}}} \right) = {\left( {\frac{a}{b}} \right)^9} = {\left( {\frac{a}{{{a^{\frac{3}{5}}}}}} \right)^9} = {\left( {{a^{\frac{2}{5}}}} \right)^9} = {a^{\frac{{18}}{5}}} = {\left( {{a^{\frac{3}{5}}}} \right)^6} = {b^6}\)
b) \({\log _a}b = {\log _a}{a^{\frac{3}{5}}} = \frac{3}{5}\)
\({\log _a}\left( {{a^2}{b^5}} \right) = {\log _a}\left( {{a^2}.{{\left( {{a^{\frac{3}{5}}}} \right)}^5}} \right) = {\log _a}\left( {{a^2}.{a^3}} \right) = {\log _a}\left( {{a^5}} \right) = 5\)
\({\log _{\sqrt[5]{a}}}\left( {\frac{a}{b}} \right) = {\log _{{a^{\frac{1}{5}}}}}\left( {\frac{a}{{{a^{\frac{3}{5}}}}}} \right) = 5{\log _a}{a^{\frac{2}{5}}} = 2\)
Bài 18 trang 58 SGK Toán 11 tập 2 - Cánh Diều yêu cầu học sinh vận dụng kiến thức về đạo hàm để giải các bài toán liên quan đến tìm đạo hàm của hàm số, xét tính đơn điệu của hàm số và tìm cực trị. Dưới đây là lời giải chi tiết cho từng bài tập trong bài:
Nội dung bài tập: Tính đạo hàm của các hàm số sau:
Lời giải:
Nội dung bài tập: Tìm đạo hàm của các hàm số sau:
Lời giải:
Tusach.vn hy vọng với lời giải chi tiết và hướng dẫn giải trên, các bạn học sinh sẽ hiểu rõ hơn về Bài 18 trang 58 SGK Toán 11 tập 2 - Cánh Diều và tự tin giải các bài tập tương tự. Chúc các bạn học tốt!
| Hàm số y | Đạo hàm y' |
|---|---|
| y = c (hằng số) | y' = 0 |
| y = xn | y' = nxn-1 |
| y = sin(x) | y' = cos(x) |
| y = cos(x) | y' = -sin(x) |
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập