Chào mừng các em học sinh đến với lời giải chi tiết bài tập mục 1 trang 22, 23, 24 SGK Toán 11 tập 1 - Cánh Diều. Tusach.vn luôn đồng hành cùng các em trong quá trình học tập, cung cấp đáp án chính xác và dễ hiểu nhất.
Bài tập này thuộc chương trình học Toán 11 tập 1, tập trung vào các kiến thức cơ bản về dãy số, cấp số cộng, cấp số nhân.
a) Cho hàm số (fleft( x right) = {x^2}) Với (x in mathbb{R}), hãy so sánh
a) Cho hàm số \(f\left( x \right) = {x^2}\)
Với \(x \in \mathbb{R}\), hãy so sánh \(f\left( { - x} \right)\) và \(f\left( x \right)\)
Quan sát parabol (P) là đồ thị của hàm số \(f\left( x \right) = {x^2}\) (Hình 20) và cho biết trục đối xứng của (P) là đường thẳng nào?

b) Cho hàm số \(g\left( x \right) = x\)
Với \(x \in \mathbb{R}\), hãy so sánh \(g\left( { - x} \right)\) và \(g\left( x \right)\)
Quan sát đường thẳng d là đồ thị của hàm số \(g\left( x \right) = x\) (Hình 21) và cho biết gốc tọa độ O có là tâm đối xứng của đường thẳng d hãy không.

Phương pháp giải:
Dựa vào kiến thức về hàm số để xác định
Lời giải chi tiết:
a)
Ta có: \(f\left( { - x} \right) = {\left( { - x} \right)^2} = {x^2},f\left( x \right) = {x^2} \Rightarrow f\left( { - x} \right) = f\left( x \right)\)
Trục đối xứng của (P) là đường thẳng y = 0
b)
Ta có: \(g\left( { - x} \right) = - g\left( x \right)\)
Gốc tọa độ O là tâm đối xứng của đường thẳng d
a) Chứng tỏ rằng hàm số \(g(x) = {x^3}\)là hàm số lẻ.
b) Cho ví dụ về hàm số không là hàm số chẵn cũng không là hàm số lẻ.
Phương pháp giải:
Sử dụng định nghĩa hàm số chẵn, hàm số lẻ.

Lời giải chi tiết:
a)
Hàm số \(g(x) = {x^3}\)
+) Có tập xác định D = R;
+) Với mọi \(x \in R\)thì \( - x \in R\)
Ta có \(g( - x) = {\left( { - x} \right)^3} = - {x^3} = - g(x)\)
Vậy \(g(x) = {x^3}\)là hàm số lẻ.
b)
Ví dụ về hàm số không là hàm số chẵn không là hàm số lẻ là
\(f(x) = {x^3} + {x^2}\)
Cho hàm số \(y = f\left( x \right)\) xác định trên \(\mathbb{R}\) và có đồ thị như Hình 22.
a) Có nhận xét gì về đồ thị hàm số trên mỗi đoạn \(\left[ {a;a + T} \right],\left[ {a + T;a + 2T} \right],\left[ {a - T;a} \right]\)?

b) Lấy điểm \(M\left( {{x_0};f\left( {{x_0}} \right)} \right)\) thuộc đồ thị hàm số với \({x_0} \in \left[ {a;a + T} \right]\). So sánh mỗi giá trị \(f\left( {{x_0} + T} \right);f\left( {{x_0} - T} \right)\) với \(f\left( {{x_0}} \right)\)
Phương pháp giải:
Dựa vào cách nhìn đồ thị để trả lời câu hỏi
Lời giải chi tiết:
a) Đồ thị hàm số trên mỗi đoạn là như nhau
b) \(f\left( {{x_0} + T} \right) = f\left( {{x_0} - T} \right) = f\left( {{x_0}} \right)\)
Cho ví dụ về hàm số tuần hoàn
Phương pháp giải:
Sử dụng định nghĩa về hàm số tuần hoàn.
Lời giải chi tiết:
Ví dụ về hàm số tuần hoàn là : \(g(x) = \left\{ \begin{array}{l}0\,\,\,\,\,\,\,,x \in Q\\1\,\,\,\,\,\,\,\,,x \in R\end{array} \right.\)
Mục 1 của SGK Toán 11 tập 1 - Cánh Diều tập trung vào việc ôn tập và mở rộng kiến thức về dãy số, bao gồm các khái niệm cơ bản như dãy số, dãy số tăng, dãy số giảm, cấp số cộng và cấp số nhân. Việc nắm vững kiến thức này là nền tảng quan trọng để giải quyết các bài toán phức tạp hơn trong chương trình học.
Bài 1 yêu cầu xác định dãy số là tăng, giảm hay không đổi. Để giải bài này, các em cần xét hiệu giữa hai số hạng liên tiếp. Nếu hiệu luôn dương thì dãy số tăng, nếu hiệu luôn âm thì dãy số giảm, và nếu hiệu bằng 0 thì dãy số không đổi.
Bài 2 tập trung vào việc tìm số hạng tổng quát của cấp số cộng. Các em cần sử dụng công thức un = u1 + (n-1)d, trong đó u1 là số hạng đầu tiên, d là công sai và n là số thứ tự của số hạng cần tìm.
Bài 3 yêu cầu tính tổng của n số hạng đầu tiên của cấp số nhân. Các em cần sử dụng công thức Sn = u1(1-qn)/(1-q), trong đó u1 là số hạng đầu tiên, q là công bội và n là số số hạng cần tính.
| Công thức | Mô tả |
|---|---|
| un = u1 + (n-1)d | Số hạng tổng quát của cấp số cộng |
| Sn = n(u1 + un)/2 | Tổng của n số hạng đầu tiên của cấp số cộng |
| un = u1qn-1 | Số hạng tổng quát của cấp số nhân |
| Sn = u1(1-qn)/(1-q) | Tổng của n số hạng đầu tiên của cấp số nhân |
Hy vọng với lời giải chi tiết và những hướng dẫn trên, các em sẽ tự tin giải quyết các bài tập trong Mục 1 trang 22, 23, 24 SGK Toán 11 tập 1 - Cánh Diều. Chúc các em học tập tốt!
Nếu có bất kỳ thắc mắc nào, đừng ngần ngại liên hệ với tusach.vn để được hỗ trợ.
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập