Bài 8 thuộc chương trình Giải tích lớp 11, tập trung vào việc ôn tập về đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số. Bài tập này yêu cầu học sinh vận dụng kiến thức đã học để giải quyết các bài toán thực tế.
tusach.vn cung cấp lời giải chi tiết, dễ hiểu, giúp học sinh nắm vững kiến thức và tự tin làm bài tập.
Cho hình lăng trụ tam giác ABC.A’B’C’. Lấy M, M’ lần lượt là trung điểm các đoạn thẳng BC, B’C’; lấy các điểm G, G’, K lần lượt thuộc các đoạn AM, A’M’, A’B sao cho \(\frac{{AG}}{{AM}} = \frac{{A'G'}}{{A'M'}} = \frac{{A'K}}{{A'B}} = \frac{2}{3}\)
Đề bài
Cho hình lăng trụ tam giác ABC.A’B’C’. Lấy M, M’ lần lượt là trung điểm các đoạn thẳng BC, B’C’; lấy các điểm G, G’, K lần lượt thuộc các đoạn AM, A’M’, A’B sao cho \(\frac{{AG}}{{AM}} = \frac{{A'G'}}{{A'M'}} = \frac{{A'K}}{{A'B}} = \frac{2}{3}\)
a) Chứng minh rằng CM’ // (A’BM’)
b) Chứng minh rằng G’K // (BCC’B’)
c) Chứng minh rằng (GG’K) // (BCC’B’)
d) Gọi\(\left( \alpha \right)\)là mặt phẳng đi qua K và song song với mặt phẳng (ABC). Mặt phẳng\(\left( \alpha \right)\)cắt cạnh CC’ tại điểm I. Tính \(\frac{{IC}}{{IC'}}\)
Phương pháp giải - Xem chi tiết
a,b, Đường thẳng d // (P) nếu d //d', d' nằm trong (P).
c, (P)//(Q) nếu d,d' nằm trong (P) và d, d'//(Q).
Lời giải chi tiết

a) Trong mp(BCC’B’) có tứ giác BCC’B’ là hình bình hành nên BC // B’C’ và BC = B’C’.
Lại có M, N lần lượt là trung điểm của BC, B’C’ nên BM = C’M’ = ½ BC = ½ B’C’.
Tứ giác BMC’M’ có BM // C’M’ (do BC // B’C’) và BM = C’M’ nên BMC’M’ là hình bình hành
Do đó C’M // M’B, mà M’B ⊂ (A’BM’) nên C’M // (A’BM’).
b) Trong mp(A’BM’), xét ∆A’BM’ có \(\frac{{A'G'}}{{A'M'}} = \frac{{A'K}}{{A'B}} = \frac{2}{3}\) nên G’K // M’B (theo định lí Thalès đảo)
Mà M’B ⊂ (BCC’B’) nên G’K // (BCC’B’).
c) Trong mp(BCC’B’), tứ giác CMM’C’ có C’M’ // CM và C’M’ = CM = ½ BC = ½ B’C’
Do đó tứ giác CMM’C’ là hình bình hành nên M’M // C’C và M’M = C’C.
Mà A’A // C’C và A’A = C’C nên A’A // M’M và A’A = M’M.
Khi đó AMM’A’ là hình bình hành nên A’M’ // AM và A’M’ = AM.
Lại có\(\frac{{AG}}{{AM}} = \frac{{A'G'}}{{A'M'}} = \frac{2}{3}\) nên A’G’ = AG, do đó G’M’ = GM.
Xét tứ giác GMM’G’ có: G’M’ = GM (do A’M’ // AM) và G’M’ = GM.
Do đó GMM’G’ là hình bình hành nên G’G // M’M
Lại có M’M ⊂ (BCC’B’) nên G’G // (BCC’B’).
Ta có: G’K // (BCC’B’);
G’G // (BCC’B’);
G’K, G’G cắt nhau tại điểm G’ và cùng nằm trong (GG’K)
Do đó (GG’K) // ((BCC’B’).
d) Trong mp(ABB’A’), vẽ đường thẳng qua K và song song với AB, A’B’; cắt A’A và B’B lần lượt tại J và H.
Trong mp (ACC’A”), vẽ đường thẳng qua J và song song với AC, A’C’; cắt C’C tại I.
Ta có: IJ // AC mà AC ⊂ (ABC) nên IJ // (ABC);
JK // AB mà AB ⊂ (ABC) nên JK // (ABC).
Lại có IJ và JK cắt nhau tại J và cùng nằm trong mp(IJK) nên (IJK) // (ABC).
Theo bài, mp(α) // (ABC) và đi qua K nên mp(α) chính là mp(IJK).
Khi đó CC’ cắt (α) tại I.
Ta có: (IJK) // (ABC) mà (ABC) // (A’B’C’) nên (A’B’C’), (IJK), (ABC) là ba mặt phẳng song song với nhau.
Xét hai cát tuyến C’C và A’B bất kì cắt ba mặt phẳng song song (A’B’C’), (IJK), (ABC) lần lượt tại các điểm C’, I, C và A’, K, B. Khi đó theo định lí Thalès trong không gian ta có:\(\frac{{C'I}}{{A'K}} = \frac{{IC}}{{KB}}\)
Suy ra \(\frac{{KB}}{{A'K}} = \frac{{IC}}{{C'I}}\)
Theo bài, \(\frac{{A'K}}{{A'B}} = \frac{2}{3}\) nên \(\frac{{A'B}}{{A'K}} = \frac{3}{2}\) do đó \(\frac{{A'B - A'K}}{{A'K}} = \frac{{3 - 2}}{2}\) hay \(\frac{{KB}}{{A'K}} = \frac{1}{2}\)
Vậy \(\frac{{IC}}{{IC'}} = \frac{{KB}}{{A'K}} = \frac{1}{2}\).
Bài 8 trang 120 SGK Toán 11 tập 1 - Cánh Diều là một bài tập quan trọng trong chương trình học, giúp học sinh củng cố kiến thức về đạo hàm và ứng dụng của nó. Dưới đây là lời giải chi tiết và hướng dẫn giải bài tập này:
Bài 8 yêu cầu học sinh thực hiện các nhiệm vụ sau:
Để giải bài tập này, học sinh cần nắm vững các kiến thức sau:
Ví dụ: Xét hàm số y = x3 - 3x2 + 2.
Để giải bài tập này một cách hiệu quả, học sinh nên:
Học sinh có thể tham khảo thêm các tài liệu sau:
Để củng cố kiến thức, học sinh nên tự giải thêm các bài tập tương tự trong sách bài tập và các đề thi thử.
Lưu ý: Bài giải trên chỉ mang tính chất tham khảo. Học sinh nên tự giải bài tập để hiểu rõ hơn về kiến thức và rèn luyện kỹ năng giải toán.
Chúc các em học tốt!
| Tiêu chí | Mô tả |
|---|---|
| Độ khó | Trung bình |
| Thời gian giải | 15-20 phút |
| Chủ đề | Đạo hàm và ứng dụng |
| Nguồn: tusach.vn | |
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập