Chào mừng các em học sinh đến với lời giải chi tiết mục 1 trang 27, 28, 29 SGK Toán 11 tập 2 - Cánh Diều trên tusach.vn. Chúng tôi hiểu rằng việc tự học đôi khi gặp nhiều khó khăn, đặc biệt là với những bài tập đòi hỏi tư duy và vận dụng kiến thức.
Với mục tiêu hỗ trợ tối đa cho các em trong quá trình học tập, tusach.vn đã biên soạn bộ giải bài tập Toán 11 tập 2 - Cánh Diều đầy đủ và chính xác.
a) Cho n là một số nguyên dương. Với a là số thực tùy ý, nêu định nghĩa lũy thừa bậc n của a
a) Cho n là một số nguyên dương. Với a là số thực tùy ý, nêu định nghĩa lũy thừa bậc n của a
b) Với a là số thực tùy ý khác 0, nêu quy ước xác định lũy thừa bậc 0 của a.
Phương pháp giải:
Dựa vào kiến thức đã học để trả lời câu hỏi
Lời giải chi tiết:
a) Định nghĩa lũy thừa bậc n của a: Cho \(a \in \mathbb{R},n \in \mathbb{N}*\). Khi đó: \({a^n} = \underbrace {a.a.a....a}_n\)
b) Với a là số thực tùy ý khác 0, quy ước xác định lũy thừa bậc 0 của a là: \({a^0} = 1\)
Tính giá trị của biểu thức: \(M = {\left( {\frac{1}{3}} \right)^{12}}.{\left( {\frac{1}{{27}}} \right)^{ - 5}} + {\left( {0,4} \right)^{ - 4}}{.25^{ - 2}}.{\left( {\frac{1}{{32}}} \right)^{ - 1}}\)
Phương pháp giải:
Dựa vào công thức vừa học để tính
Lời giải chi tiết:
\(\begin{array}{l}M = {\left( {\frac{1}{3}} \right)^{12}}.{\left( {\frac{1}{{27}}} \right)^{ - 5}} + {\left( {0,4} \right)^{ - 4}}{.25^{ - 2}}.{\left( {\frac{1}{{32}}} \right)^{ - 1}}\\M = {\left( {\frac{1}{3}} \right)^{12}}.{\left( {\frac{1}{3}} \right)^{3.\left( { - 5} \right)}} + {\left( {\frac{2}{5}} \right)^{ - 4}}.\frac{1}{{5{}^4}}.32\\M = {\left( {\frac{1}{3}} \right)^{12 - 15}} + {\left( {\frac{5}{2}} \right)^4}.{\left( {\frac{1}{5}} \right)^4}{.2^4}.2\\M = {3^3} + 2 = 27 + 2 = 29\end{array}\)
a) Với a là số thực không âm, nêu định nghĩa căn bậc hai của a
b) Với a là số thực tùy ý, nêu định nghĩa căn bậc ba của a
Phương pháp giải:
Dựa vào kiến thức đã học về căn bậc 2 ở lớp 9 để trả lời câu hỏi
Lời giải chi tiết:
a) Căn bậc hai của một số thực a không âm, kí hiệu là \(\sqrt a \) là số x sao cho \({x^2} = a\)
b) Căn bậc ba của một số a tùy ý, kí hiệu là \(\sqrt[3]{a}\) là số x sao cho \({x^3} = a\)
Các số 2 và – 2 có là căn bậc 6 của 64 hay không?
Phương pháp giải:
Dựa vào cách làm của ví dụ 2 để làm
Lời giải chi tiết:
Ta thấy: \(\begin{array}{l}{2^6} = 64\\{\left( { - 2} \right)^6} = 64\end{array}\)
Do đó, 2 và – 2 là căn bậc 6 của 64
a) Với mỗi số thực a, so sánh \(\sqrt {{a^2}} \) và \(\left| a \right|\); \(\sqrt[3]{{{a^3}}}\) và a
b) Cho a, b là hai số thực dương. So sánh: \(\sqrt {a.b} \) và \(\sqrt a .\sqrt b \)
Phương pháp giải:
Dựa vào các tính chất của căn bậc hai và căn bậc 3 đã học để làm bài
Lời giải chi tiết:
a) Ta có: \({\left( {\sqrt {{a^2}} } \right)^2} = {a^2};\,\,\,{\left( {\left| a \right|} \right)^2} = {a^2}\)
Do \({a^2} = {a^2} \Rightarrow \sqrt {a{}^2} = \left| a \right|\)
Ta có: \({\left( {\sqrt[3]{{{a^3}}}} \right)^3} = {a^3};\,\,\,{a^3} = {a^3}\)
Do \({a^3} = {a^3} \Rightarrow \sqrt[3]{{{a^3}}} = a\)
b) Ta có: \({\left( {\sqrt {a.b} } \right)^2} = a.b;\,\,{\left( {\sqrt a .\sqrt b } \right)^2} = {\left( {\sqrt a } \right)^2}.{\left( {\sqrt b } \right)^2} = a.b\)
Do \(a.b = a.b \Rightarrow {\left( {\sqrt {ab} } \right)^2} = \sqrt a .\sqrt b \)
Rút gọn mỗi biểu thức sau:
a) \(\sqrt[3]{{\frac{{125}}{{64}}}}.\sqrt[4]{{81}}\)
b) \(\frac{{\sqrt[5]{{98}}.\sqrt[5]{{343}}}}{{\sqrt[5]{{64}}}}\)
Phương pháp giải:
Dựa vào các công thức vừa học để xác định
Lời giải chi tiết:
a) \(\sqrt[3]{{\frac{{125}}{{64}}}}.\sqrt[4]{{81}} = \frac{{\sqrt[3]{{125}}}}{{\sqrt[3]{{64}}}}.3 = \frac{5}{4}.3 = \frac{{15}}{4}\)
b) \(\frac{{\sqrt[5]{{98}}.\sqrt[5]{{343}}}}{{\sqrt[5]{{64}}}} = \sqrt[5]{{\frac{{98.343}}{{64}}}} = \sqrt[5]{{\frac{{{{2.7}^2}{{.7}^3}}}{{{2^6}}}}} = \sqrt[5]{{\frac{{{7^5}}}{{{2^5}}}}} = \frac{7}{2}\)
Thực hiện các hoạt động sau:
a) So sánh: \({2^{\frac{6}{3}}}\) và \({2^2}\)
b) So sánh: \({2^{\frac{6}{3}}}\) và \(\sqrt[3]{{{2^6}}}\)
Phương pháp giải:
Dựa vào công thức lũy thừa với số mũ hữu tỷ và tính chất của phép tính lũy thừa để so sánh
Lời giải chi tiết:
a) Ta có: \({2^{\frac{6}{3}}} = \sqrt[3]{{{2^6}}} = \sqrt[3]{{{{\left( {{2^2}} \right)}^3}}} = {2^2}\)
b) Ta có: \({2^{\frac{6}{3}}} = \sqrt[3]{{{2^6}}}\)
Rút gọn biểu thức:
\(N = \frac{{{x^{\frac{4}{3}}}y + x{y^{\frac{4}{3}}}}}{{\sqrt[3]{x} + \sqrt[3]{y}}}\,\,\,\left( {x > 0;y > 0} \right)\)
Phương pháp giải:
Dựa vào công thức vừa học để làm
Lời giải chi tiết:
\(N = \frac{{{x^{\frac{4}{3}}}y + x{y^{\frac{4}{3}}}}}{{\sqrt[3]{x} + \sqrt[3]{y}}} = \frac{{xy.\left( {{x^{\frac{1}{3}}} + {y^{\frac{1}{3}}}} \right)}}{{\sqrt[3]{x} + \sqrt[3]{y}}} = \frac{{xy\left( {\sqrt[3]{x} + \sqrt[3]{y}} \right)}}{{\sqrt[3]{x} + \sqrt[3]{y}}} = xy\)
Mục 1 của chương trình Toán 11 tập 2 - Cánh Diều tập trung vào các kiến thức về phép biến hình. Đây là một phần quan trọng, nền tảng cho việc học tập các chương trình Toán học nâng cao hơn. Việc nắm vững các khái niệm và phương pháp giải bài tập trong mục này là vô cùng cần thiết.
Dưới đây là lời giải chi tiết cho từng bài tập trong mục 1 trang 27, 28, 29 SGK Toán 11 tập 2 - Cánh Diều:
(Nội dung bài tập và lời giải chi tiết)
(Nội dung bài tập và lời giải chi tiết)
(Nội dung bài tập và lời giải chi tiết)
Tusach.vn luôn đồng hành cùng các em học sinh trong quá trình học tập. Chúng tôi cung cấp lời giải chi tiết, dễ hiểu cho tất cả các bài tập trong SGK Toán 11 tập 2 - Cánh Diều, cũng như các tài liệu học tập hữu ích khác. Hãy truy cập tusach.vn để được hỗ trợ tốt nhất!
| Phép biến hình | Định nghĩa | Tính chất |
|---|---|---|
| Tịnh tiến | Biến hình bảo toàn khoảng cách giữa hai điểm bất kỳ. | Biến đường thẳng thành đường thẳng song song hoặc trùng nhau. |
| Đối xứng trục | Biến hình bảo toàn khoảng cách giữa hai điểm bất kỳ. | Biến đường thẳng thành đường thẳng vuông góc với trục đối xứng. |
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập