Bài 2 trang 104 SGK Toán 11 Tập 1 - Cánh Diều là bài tập thuộc chương trình học Toán 11, tập trung vào việc rèn luyện kỹ năng về giới hạn của hàm số. Bài tập này yêu cầu học sinh vận dụng kiến thức đã học để giải quyết các bài toán cụ thể.
tusach.vn cung cấp lời giải chi tiết, dễ hiểu, giúp học sinh nắm vững kiến thức và phương pháp giải bài tập hiệu quả.
Trong Hình 57, khi cắt bánh sinh nhật, mặt cắt và mặt khay đựng bánh lần lượt gợi nên hình ảnh mặt phẳng (Q) và mặt phẳng (P)
Đề bài
Trong Hình 57, khi cắt bánh sinh nhật, mặt cắt và mặt khay đựng bánh lần lượt gợi nên hình ảnh mặt phẳng (Q) và mặt phẳng (P); mép trên và mép dưới của lát cắt lần lượt gợi nên hình ảnh hai đường thẳng a và b trong đó a song song với mặt phẳng (P). Cho biết hai đường thẳng a, b có song song với nhau hay không.

Phương pháp giải - Xem chi tiết
Nếu hai mặt phẳng phân biệt cùng song song với một đường thẳng thì giao tuyến của chúng cũng song song với đường thẳng đó.
Lời giải chi tiết
Hai đường thẳng a, b song song với nhau vì a song song với (P) mà (Q) cắt (P) tại giao tuyến b.
Tức là,
\(\left\{ \begin{array}{l}a \subset (Q)\\a//(P)\\(Q) \cap (P) = b\end{array} \right. \Rightarrow a//b\)
Bài 2 trang 104 SGK Toán 11 Tập 1 - Cánh Diều là một bài tập quan trọng trong chương trình học Toán 11, giúp học sinh củng cố kiến thức về giới hạn của hàm số. Dưới đây là lời giải chi tiết và hướng dẫn giải bài tập này, được cung cấp bởi tusach.vn.
Bài 2 yêu cầu tính các giới hạn sau:
1. Tính limx→2 (x2 - 3x + 2) / (x - 2)
Ta có thể phân tích tử thức:
x2 - 3x + 2 = (x - 1)(x - 2)
Do đó:
limx→2 (x2 - 3x + 2) / (x - 2) = limx→2 (x - 1)(x - 2) / (x - 2) = limx→2 (x - 1) = 2 - 1 = 1
2. Tính limx→-1 (x3 + 1) / (x + 1)
Ta có thể phân tích tử thức:
x3 + 1 = (x + 1)(x2 - x + 1)
Do đó:
limx→-1 (x3 + 1) / (x + 1) = limx→-1 (x + 1)(x2 - x + 1) / (x + 1) = limx→-1 (x2 - x + 1) = (-1)2 - (-1) + 1 = 1 + 1 + 1 = 3
3. Tính limx→0 (√(x+1) - 1) / x
Để tính giới hạn này, ta sử dụng phương pháp nhân liên hợp:
limx→0 (√(x+1) - 1) / x = limx→0 [(√(x+1) - 1)(√(x+1) + 1)] / [x(√(x+1) + 1)] = limx→0 (x + 1 - 1) / [x(√(x+1) + 1)] = limx→0 x / [x(√(x+1) + 1)] = limx→0 1 / (√(x+1) + 1) = 1 / (√(0+1) + 1) = 1 / (1 + 1) = 1/2
Vậy, kết quả của các giới hạn là:
Khi gặp các bài toán tính giới hạn, hãy chú ý đến các phương pháp sau:
Hy vọng lời giải chi tiết này sẽ giúp các bạn hiểu rõ hơn về Bài 2 trang 104 SGK Toán 11 Tập 1 - Cánh Diều. Hãy truy cập tusach.vn để xem thêm nhiều bài giải Toán 11 khác!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập