Chào mừng bạn đến với lời giải chi tiết Mục 3 trang 19, 20 SGK Toán 11 tập 2 - Cánh Diều trên tusach.vn. Chúng tôi hiểu rằng việc tự học đôi khi gặp khó khăn, đặc biệt là với những bài tập đòi hỏi tư duy và vận dụng kiến thức.
Bài viết này sẽ cung cấp đáp án chính xác, phương pháp giải rõ ràng, giúp bạn hiểu sâu sắc nội dung bài học và tự tin giải quyết các bài tập tương tự.
Chọn ngẫu nhiên một số nguyên dương không vượt quá 20. Xét biến cố A: “Số được viết ra là số chia hết cho 2”
Chọn ngẫu nhiên một số nguyên dương không vượt quá 20. Xét biến cố A: “Số được viết ra là số chia hết cho 2” và biến cố B: “Số được viết ra là số chia hết cho 7”.
a) Tính \(P(A);\,P(B);\,P(A \cup B);\,P(A \cap B)\)
b) So sánh \(P(A \cup B)\) và \(P(A) + P(B) - P(A \cap B)\)
Phương pháp giải:
- Liệt kê các phần tử của không gian mẫu, các biến cố
- Tìm xác suất của từng biến cố
Lời giải chi tiết:
\(\Omega = \{ 1;2;3;4;5;6;7;8;9;10;11;12;13;14;15;16;17;18;19;20\} \)
\(A = \{ 2;4;6;8;10;12;14;16;18;20\} \); \(B = \{ 7;14\} \)
\(A \cup B = \{ 2;5;6;7;8;10;12;14;16;18;20\} \); \(A \cap B = \{ 14\} \)
a) \(P(A) = \frac{{10}}{{20}} = \frac{1}{2};P(B) = \frac{2}{{20}} = \frac{1}{{10}};P(A \cup B) = \frac{{11}}{{20}};P(A \cap B) = \frac{1}{{20}}\)
b) \(P(A) + P(B) - P(A \cap B) = \frac{1}{2} + \frac{1}{{10}} - \frac{1}{{20}} = \frac{1}{{20}}\)
⇨ \(P(A) + P(B) - P(A \cap B) = P(A \cup B)\)
Một hộp có 52 chiếc thẻ cùng loại, mỗi thẻ được ghi một trong các số 1, 2, 3, …, 52; hai thẻ khác nhau thì ghi hai số khác nhau. Rút ngẫu nhiên một chiếc thẻ trong hộp. Xét biến cố A: “Số xuất hiện trên thẻ được rút ra là số chia hết cho 7” và biến cố B: “Số xuất hiện trên thẻ được rút là số chia hết cho 11”. Tính \(P\left( {A \cup B} \right)\).
Phương pháp giải:
Dựa vào công thức \(P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right)\) để tính
Lời giải chi tiết:
\(\begin{array}{l}n\left( \Omega \right) = 52\\n\left( A \right) = 6 \Rightarrow P\left( A \right) = \frac{6}{{52}} = \frac{3}{{26}}\\n\left( B \right) = 4 \Rightarrow P\left( B \right) = \frac{4}{{52}} = \frac{1}{{13}}\\ \Rightarrow P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) = \frac{3}{{26}} + \frac{1}{{13}} = \frac{5}{{26}}\end{array}\)
Xét các biến cố độ lập A và B trong Ví dụ 4.
a) Tính P(A); P(B) và P(A\( \cap \)B)
b) So sánh P(A\( \cap \)B) và P(A).P(B)
Phương pháp giải:
- Dùng cách liệt kê để biểu diễn không gian mẫu và các biến cố
- Tìm tập hợp thành phần
- Tìm xác suất của từng biến cố
Lời giải chi tiết:
- Cách chọn 2 quả bóng trong 7 quả bóng là: 42
- Cách chọn 2 quả bóng sao cho quả bóng màu xanh được lấy ra ở lần thứ nhất là: 21
- Cách chọn 2 quả bóng sao cho quả bóng màu đỏ được lấy ra ở lần thứ hai là: 24
- Cách chọn 2 quả bóng sao cho quả bóng màu xanh được lấy ra ở lần thứ nhất và quả bóng màu đỏ được lấy ra ở lần thứ hai là: 12
a) \(P(A) = \frac{{21}}{{42}} = \frac{1}{2};\,P(B) = \frac{{24}}{{42}} = \frac{4}{7};\,P(A \cap B) = \frac{{12}}{{42}} = \frac{2}{7}\)
b) \(P(A).P(B) = \frac{1}{2}.\frac{4}{7} = \frac{2}{7}\) => \(P(A).P(B) = P(A \cap B)\)
Một xưởng sản xuất có hai máy chạy độc lập với nhau. Xác suất để máy I và máy II chạy tốt lần lượt là 0,8 và 0,9. Tính xác suất của biến cố C: “Cả hai máy của xưởng sản xuất đều chạy tốt”.
Phương pháp giải:
Dựa vào công thức\(P(A).P(B) = P(A \cap B)\) để tính
Lời giải chi tiết:
\(P(A).P(B) = P(C) \Rightarrow P\left( C \right) = 0,8.0,9 = 0,72\)
Mục 3 trang 19, 20 SGK Toán 11 tập 2 - Cánh Diều tập trung vào việc ôn tập chương 3: Hàm số lượng giác. Đây là một phần quan trọng trong chương trình Toán 11, đòi hỏi học sinh nắm vững các kiến thức về hàm số lượng giác, đồ thị hàm số, và các phương pháp giải phương trình lượng giác cơ bản.
Mục 3 bao gồm các bài tập tổng hợp, giúp học sinh rèn luyện kỹ năng giải toán và củng cố kiến thức đã học. Các dạng bài tập thường gặp bao gồm:
Để giải tốt các bài tập trong Mục 3, bạn cần nắm vững các phương pháp sau:
Dưới đây là giải chi tiết một số bài tập tiêu biểu trong Mục 3 trang 19, 20 SGK Toán 11 tập 2 - Cánh Diều:
(Nội dung bài tập và lời giải chi tiết)
(Nội dung bài tập và lời giải chi tiết)
...
Khi giải các bài tập về hàm số lượng giác, bạn cần chú ý:
Hy vọng với những hướng dẫn chi tiết và lời giải cụ thể trên, bạn đã nắm vững kiến thức và kỹ năng giải các bài tập trong Mục 3 trang 19, 20 SGK Toán 11 tập 2 - Cánh Diều. Hãy luyện tập thường xuyên để củng cố kiến thức và đạt kết quả tốt nhất trong các kỳ thi.
Nếu bạn có bất kỳ thắc mắc nào, đừng ngần ngại đặt câu hỏi trong phần bình luận bên dưới. tusach.vn luôn sẵn sàng hỗ trợ bạn!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập