Chào mừng các em học sinh đến với lời giải chi tiết mục 2 trang 97, 98, 99, 100 SGK Toán 11 tập 1 chương trình Cánh Diều. Bài viết này sẽ cung cấp đáp án chính xác và phương pháp giải bài tập một cách dễ hiểu nhất.
Chúng tôi hiểu rằng việc tự học đôi khi gặp nhiều khó khăn. Vì vậy, tusach.vn luôn cố gắng mang đến những tài liệu học tập chất lượng, hỗ trợ các em học tập tốt hơn.
Trong không gian, cho điểm M và đường thẳng d không đi qua điểm M (Hình 36). Nêu dự đoán về số đường thẳng đi qua điểm M và song song với đường thẳng d.
Trong không gian, cho điểm M và đường thẳng d không đi qua điểm M (Hình 36). Nêu dự đoán về số đường thẳng đi qua điểm M và song song với đường thẳng d.

Phương pháp giải:
Trong không gian, qua một điểm không nằm trên đường thẳng cho trước, có một và chỉ một đường thẳng song song với đường thẳng đã cho
Lời giải chi tiết:
Có một và chỉ một đường thẳng đi qua điểm M và song song với đường thẳng d
Cho ba mặt phẳng (P), (Q), (R) đôi một cắt nhau theo ba giao tuyến phân biệt a, b, c, trong đó \(a = (P) \cap (R),b = (Q) \cap (R),c = (P) \cap (Q)\)
- Nếu hai đường thẳng a và b cắt nhau tại điểm M thì đường thẳng c có đi qua điểm M hay không (Hình 38a)?
- Nếu đường thẳng a song song với đường thẳng b thì đường thẳng a có song song với đường thẳng c hay không (Hình 38b)?

Phương pháp giải:
Nếu ba mặt phẳng đôi một cắt nhau theo ba giao tuyến phân biệt thì ba giao tuyến ấy đồng quy hoặc đôi một song song với nhau.
Lời giải chi tiết:
- Nếu hai đường thẳng a và b cắt nhau tại điểm M thì đường thẳng c đi qua điểm M
- Nếu đường thẳng a song song với đường thẳng b thì đường thẳng a song song với đường thẳng c
Cho hình chóp S.ABCD có đáy là hình bình hành. Xác định giao tuyến của các cặp mặt phẳng (SAB) và (SCD); (SAD) và (SBC).
Phương pháp giải:
Để xác định giao tuyến của hai mặt phẳng, ta tìm điểm chung của chúng.
Đường thẳng đi qua hai điểm chung là giao tuyến
Lời giải chi tiết:

Ta có: AB thuộc (SAB)
CD thuộc (SCD)
Mà AB // CD, S là giao điểm của hai mặt phẳng (SAB) và (SCD)
Từ S kẻ Sx sao cho Sx // AB // CD
Vậy Sx là giao tuyến của hai mặt phẳng (SAB) và (SCD)
Chứng minh tương tự, ta có: Sy là giao tuyến của hai mặt phẳng (SAD) và (SBC).
Trong mặt phẳng, hãy nêu vị trí tương đối của hai đường thẳng phân biệt cùng song song với đường thẳng thứ ba.
Phương pháp giải:
Hai đường thẳng phân biệt cùng song song với đường thẳng thứ ba thì song song với nhau.
Lời giải chi tiết:
Trong không gian, hai đường thẳng phân biệt cùng song song với đường thẳng thứ ba thì song song với nhau
Cho hình chóp S.ABC. Gọi M, N lần lượt là trung điểm của các đoạn thẳng SA, SC. Lấy các điểm P, Q lần lượt thuộc các đoạn thẳng AB, BC sao cho \(\frac{{BP}}{{BA}} = \frac{{BQ}}{{BC}} = \frac{1}{3}\). Chứng minh rằng MN song song với PQ.
Phương pháp giải:
- Nếu ba mp phân biệt đôi một cắt nhau theo ba giao tuyến phân biệt thì ba giao tuyến ấy hoặc đồng quy hoặc song song với nhau
- Hệ quả: Nếu hai mp phân biệt lần lượt chứa hai đường thẳng song song thì giao tuyến của chúng cũng song song với hai đường thẳng đó hoặc trùng với một trong hai đường thẳng đó
- Hai đường thẳng phân biệt cùng song song với đường thẳng thứ ba thì song song với nhau
\(\left\{ \begin{array}{l}a \ne b\\a//c\\b//c\end{array} \right. \Rightarrow a//b\)
Lời giải chi tiết:

Ta có M, N lần lượt là trung điểm của SA, SC
Do đó, tam giác SAC có MN // AC (1)
Ta có: \(\frac{{BP}}{{BA}} = \frac{{BQ}}{{BC}} = \frac{1}{3}\)
Suy ra: PQ // AC (2)
Từ (1) và (2), suy ra: MN // PQ
Mục 2 trong SGK Toán 11 tập 1 Cánh Diều tập trung vào các kiến thức về véc tơ trong không gian. Đây là một phần quan trọng, đặt nền móng cho các kiến thức hình học không gian phức tạp hơn trong chương trình học. Việc nắm vững các khái niệm, định lý và kỹ năng giải bài tập trong mục này là vô cùng cần thiết.
Dưới đây là lời giải chi tiết cho từng bài tập trong mục 2, trang 97, 98, 99, 100 SGK Toán 11 tập 1 Cánh Diều:
(Đề bài)
Lời giải:
(Giải thích chi tiết từng bước, kèm theo hình vẽ minh họa nếu cần thiết)
(Đề bài)
Lời giải:
(Giải thích chi tiết từng bước, kèm theo hình vẽ minh họa nếu cần thiết)
(Đề bài)
Lời giải:
(Giải thích chi tiết từng bước, kèm theo hình vẽ minh họa nếu cần thiết)
(Đề bài)
Lời giải:
(Giải thích chi tiết từng bước, kèm theo hình vẽ minh họa nếu cần thiết)
Để hiểu sâu hơn về véc tơ trong không gian, các em có thể tham khảo thêm các tài liệu sau:
Hy vọng với lời giải chi tiết và những hướng dẫn trên, các em sẽ tự tin hơn trong việc giải các bài tập mục 2 trang 97, 98, 99, 100 SGK Toán 11 tập 1 Cánh Diều. Chúc các em học tập tốt!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập