1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Bài 6 trang 72 SGK Toán 11 tập 2 - Cánh Diều

Bài 6 trang 72 SGK Toán 11 tập 2 - Cánh Diều

Bài 6 trang 72 SGK Toán 11 tập 2 - Cánh Diều: Giải tích

Bài 6 thuộc chương trình giải tích lớp 11, tập trung vào việc ôn tập và củng cố kiến thức về đạo hàm. Bài tập này yêu cầu học sinh vận dụng các công thức và quy tắc đạo hàm đã học để giải quyết các bài toán cụ thể.

tusach.vn cung cấp lời giải chi tiết, dễ hiểu, giúp học sinh nắm vững kiến thức và tự tin làm bài tập.

Viết phương trình tiếp tuyến của đồ thị hàm số sau:

Đề bài

Viết phương trình tiếp tuyến của đồ thị hàm số sau:

a) \(y = {x^3} - 3{x^2} + 4\) tại điểm có hoành độ \({x_0} = 2\)

b) \(y = \ln x\) tại điểm có hoành độ \({x_0} = e\)

c) \(y = {e^x}\) tại điểm có hoành độ \({x_0} = 0\)

Phương pháp giải - Xem chi tiếtBài 6 trang 72 SGK Toán 11 tập 2 - Cánh Diều 1

Dựa vào phương trình tiếp tuyến đã học để làm bài

Lời giải chi tiết

a) \(y' = \left( {{x^3} - 3{x^2} + 4} \right)' = 3{x^2} - 6x\), \(y'\left( 2 \right) = {3.2^2} - 6.2 = 0\)

Thay \({x_0} = 2\) vào phương trình \(y = {x^3} - 3{x^2} + 4\) ta được: \(y = {2^3} - {3.2^2} + 4 = 0\)

Ta có phương trình tiếp tuyến của đồ thị hàm số: \(y = 0.(x - 2) + 0 = 0\)

Vậy phương trình tiếp tuyến của đồ thị hàm số là y = 0

b) \(y' = \left( {\ln x} \right)' = \frac{1}{x}\), \(y'(e) = \frac{1}{e}\)

Thay \({x_0} = e\) vào phương trình \(y = \ln x\) ta được: \(y = \ln e = 1\)

Ta có phương trình tiếp tuyến của đồ thị hàm số: \(y = \frac{1}{e}.\left( {x - e} \right) + 1 = \frac{1}{e}x - 1 + 1 = \frac{1}{e}x\)

Vậy phương trình tiếp tuyến của đồ thị hàm số là: \(y = \frac{1}{e}x\)

c) \(y' = \left( {{e^x}} \right)' = {e^x},\,\,y'(0) = {e^0} = 1\)

Thay \({x_0} = 0\) vào phương trình \(y = {e^x}\) ta được: \(y = {e^0} = 1\)

Ta có phương trình tiếp tuyến của đồ thị hàm số: \(y = 1.\left( {x - 0} \right) + 1 = x + 1\)

Vậy phương trình tiếp tuyến của đồ thị hàm số là: \(y = x + 1\)

Bài 6 trang 72 SGK Toán 11 tập 2 - Cánh Diều: Giải chi tiết và hướng dẫn

Bài 6 trang 72 SGK Toán 11 tập 2 - Cánh Diều là một bài tập quan trọng trong chương trình học, giúp học sinh rèn luyện kỹ năng áp dụng đạo hàm vào giải quyết các bài toán thực tế. Dưới đây là lời giải chi tiết và hướng dẫn giải bài tập này:

Nội dung bài tập

Bài 6 yêu cầu tính đạo hàm của các hàm số sau:

  • a) y = x3 - 3x2 + 2x - 5
  • b) y = (x2 + 1)(x - 2)
  • c) y = (x2 + 3x + 1) / (x + 1)
  • d) y = sin(2x + 1)

Lời giải chi tiết

a) y = x3 - 3x2 + 2x - 5

Áp dụng công thức đạo hàm của tổng và hiệu, ta có:

y' = 3x2 - 6x + 2

b) y = (x2 + 1)(x - 2)

Áp dụng công thức đạo hàm của tích, ta có:

y' = (2x)(x - 2) + (x2 + 1)(1) = 2x2 - 4x + x2 + 1 = 3x2 - 4x + 1

c) y = (x2 + 3x + 1) / (x + 1)

Áp dụng công thức đạo hàm của thương, ta có:

y' = [(2x + 3)(x + 1) - (x2 + 3x + 1)(1)] / (x + 1)2 = (2x2 + 5x + 3 - x2 - 3x - 1) / (x + 1)2 = (x2 + 2x + 2) / (x + 1)2

d) y = sin(2x + 1)

Áp dụng công thức đạo hàm của hàm hợp, ta có:

y' = cos(2x + 1) * 2 = 2cos(2x + 1)

Lưu ý khi giải bài tập

  • Nắm vững các công thức đạo hàm cơ bản.
  • Áp dụng đúng công thức đạo hàm của tổng, hiệu, tích, thương và hàm hợp.
  • Kiểm tra lại kết quả sau khi tính toán.

Mở rộng kiến thức

Để hiểu sâu hơn về đạo hàm, bạn có thể tham khảo thêm các tài liệu sau:

  • Sách giáo khoa Toán 11 tập 2 - Cánh Diều
  • Các bài giảng trực tuyến về đạo hàm
  • Các bài tập luyện tập về đạo hàm

tusach.vn hy vọng với lời giải chi tiết và hướng dẫn trên, bạn sẽ tự tin hơn khi giải Bài 6 trang 72 SGK Toán 11 tập 2 - Cánh Diều và các bài tập tương tự. Chúc bạn học tốt!

Hàm sốĐạo hàm
y = x3 - 3x2 + 2x - 5y' = 3x2 - 6x + 2
y = (x2 + 1)(x - 2)y' = 3x2 - 4x + 1
y = (x2 + 3x + 1) / (x + 1)y' = (x2 + 2x + 2) / (x + 1)2
y = sin(2x + 1)y' = 2cos(2x + 1)

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN