Chào mừng các em học sinh đến với lời giải chi tiết Mục 2 trang 108, 109, 110, 111 SGK Toán 11 tập 2 - Cánh Diều. Tusach.vn luôn đồng hành cùng các em trong quá trình học tập, cung cấp đáp án chính xác và dễ hiểu nhất.
Mục tiêu của chúng tôi là giúp các em nắm vững kiến thức, tự tin giải quyết các bài tập và đạt kết quả cao trong môn Toán.
Để tạo mô hình một tháp chuông ở Hình 83a từ một tấm bìa hình vuông, bạn Dũng cắt bỏ phần màu trắng gồm bốn tam giác cân bằng nhau có đáy là các cạnh của tấm bìa (Hình 83b)
Để tạo mô hình một tháp chuông ở Hình 83a từ một tấm bìa hình vuông, bạn Dũng cắt bỏ phần màu trắng gồm bốn tam giác cân bằng nhau có đáy là các cạnh của tấm bìa (Hình 83b) rồi gấp lại phần màu xanh để tạo thành một hình chóp tứ giác. Quan sát Hình 83a, 83b và cho biết:
a) Đáy của hình chóp mà bạn Dũng tạo ra là tứ giác có tính chất gì;
b) Các cạnh bên của hình chóp đó có bằng nhau hay không.

Phương pháp giải:
Quan sát hình ảnh và trả lời câu hỏi.
Lời giải chi tiết:
a) Đáy của hình chóp mà bạn Dũng tạo ra là hình vuông.
b) Các cạnh bên của hình chóp đó bằng nhau.
Cho hình chóp tam giác đều \(S.ABC\). Chứng minh rằng các cạnh bên tạo với mặt phẳng chứa đáy các góc bằng nhau.
Phương pháp giải:
Cách tính góc giữa đường thẳng và mặt phẳng: Tính góc giữa đường thẳng đó và hình chiếu của nó lên mặt phẳng.
Lời giải chi tiết:

Gọi \(O\) là trọng tâm tam giác \(ABC\).
\(\begin{array}{l} \Rightarrow SO \bot \left( {ABC} \right)\\ \Rightarrow \left( {SA,\left( {ABC} \right)} \right) = \left( {SA,OA} \right) = \widehat {SAO},\\\left( {SB,\left( {ABC} \right)} \right) = \left( {SB,OB} \right) = \widehat {SBO},\\\left( {SC,\left( {ABC} \right)} \right) = \left( {SC,OC} \right) = \widehat {SCO}\end{array}\)
Tam giác \(ABC\) đều \( \Rightarrow OA = OB = OC\).
\(\begin{array}{l}SA = SB = SC \Rightarrow \frac{{OA}}{{SA}} = \frac{{OB}}{{SB}} = \frac{{OC}}{{SC}} \Rightarrow \cos \widehat {SAO} = \cos \widehat {SBO} = {\mathop{\rm co}\nolimits} \widehat {sSCO}\\ \Rightarrow \left( {SA,\left( {ABC} \right)} \right) = \left( {SB,\left( {ABC} \right)} \right) = \left( {SC,\left( {ABC} \right)} \right)\end{array}\)
Khối bê tông ở Hình 87a gợi nên hình ảnh một hình chóp bị cắt đi bởi mặt phẳng \(\left( R \right)\) song song với đáy. Hình 87b là hình biểu diễn của khối bê tông ở Hình 87a. Hãy dự đoán về mối quan hệ giữa các đường thẳng chứa các cạnh \({A_1}{B_1},{A_2}{B_2},{A_3}{B_3},{A_4}{B_4}\).

Phương pháp giải:
Quan sát hình ảnh và trả lời câu hỏi.
Lời giải chi tiết:
Các đường thẳng chứa các cạnh \({A_1}{B_1},{A_2}{B_2},{A_3}{B_3},{A_4}{B_4}\) đồng quy tại một điểm.
Cho hình chóp đều \(S.ABC\). Gọi \(A',B',C'\) lần lượt là trung điểm của các đoạn thẳng \(SA,SB,SC\). Chứng minh rằng phần hình chóp đã cho giới hạn bởi hai mặt phẳng \(\left( {ABC} \right)\) và \(\left( {A'B'C'} \right)\) là hình chóp cụt đều.
Phương pháp giải:
Ta cần chứng minh hai mặt phẳng \(\left( {ABC} \right)\) và \(\left( {A'B'C'} \right)\) song song với nhau.
Lời giải chi tiết:

\(A'\) là trung điểm của \(SA\)
\(B'\) là trung điểm của \(SB\)
\( \Rightarrow A'B'\) là đường trung bình của \(\Delta SAB\)
\(\left. \begin{array}{l} \Rightarrow A'B'\parallel AB\\AB \subset \left( {ABC} \right)\end{array} \right\} \Rightarrow A'B'\parallel \left( {ABC} \right)\)
\(A'\) là trung điểm của \(SA\)
\(C'\) là trung điểm của \(SC\)
\( \Rightarrow A'C'\) là đường trung bình của \(\Delta SAC\)
\(\left. \begin{array}{l} \Rightarrow A'C'\parallel AC\\AC \subset \left( {ABC} \right)\end{array} \right\} \Rightarrow A'C'\parallel \left( {ABC} \right)\)
\(\left. \begin{array}{l}A'B'\parallel \left( {ABC} \right)\\A'C'\parallel \left( {ABC} \right)\\A'B',A'C' \subset \left( {A'B'C'} \right)\end{array} \right\} \Rightarrow \left( {A'B'C'} \right)\parallel \left( {ABC} \right)\)
Vậy phần hình chóp đã cho giới hạn bởi hai mặt phẳng \(\left( {ABC} \right)\) và \(\left( {A'B'C'} \right)\) là hình chóp cụt đều.
Mục 2 trong SGK Toán 11 tập 2 - Cánh Diều tập trung vào các kiến thức về đường thẳng và mặt phẳng trong không gian. Đây là một phần quan trọng, đặt nền móng cho các kiến thức hình học không gian phức tạp hơn ở các lớp trên. Việc nắm vững các khái niệm, định lý và phương pháp giải bài tập trong mục này là vô cùng cần thiết.
Để giải các bài tập trong Mục 2, các em cần:
Dưới đây là giải chi tiết các bài tập trang 108, 109, 110, 111 SGK Toán 11 tập 2 - Cánh Diều:
(Nội dung bài tập và lời giải chi tiết)
(Nội dung bài tập và lời giải chi tiết)
(Nội dung bài tập và lời giải chi tiết)
(Nội dung bài tập và lời giải chi tiết)
Trong quá trình giải bài tập, các em cần chú ý:
Tusach.vn hy vọng rằng với lời giải chi tiết và hướng dẫn giải bài tập trên, các em sẽ tự tin hơn trong việc học tập môn Toán 11. Nếu có bất kỳ thắc mắc nào, đừng ngần ngại liên hệ với chúng tôi để được hỗ trợ. Chúc các em học tốt!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập