Bài 6 trang 76 SGK Toán 11 tập 2 thuộc chương trình Toán 11, tập trung vào việc ôn tập chương 3: Hàm số lượng giác. Bài tập này yêu cầu học sinh vận dụng kiến thức về các hàm số lượng giác cơ bản, tính chất của chúng và các công thức liên quan để giải quyết các bài toán cụ thể.
tusach.vn cung cấp lời giải chi tiết, dễ hiểu, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán hiệu quả.
Một con lắc lò xo dao động điều hòa theo phương ngang trên mặt phẳng không ma sát
Đề bài
Một con lắc lò xo dao động điều hòa theo phương ngang trên mặt phẳng không ma sát, có phương trình chuyển động \(x = 4\cos \left( {\pi t - \frac{{2\pi }}{3}} \right) + 3\), trong đó t tính bằng giây và x tính bằng centimet
a) Tìm vận tốc tức thời và gia tốc tức thời của con lắc tại thời điểm t (s)
b) Tìm thời điểm mà vận tốc tức thời của con lắc bằng 0.
Phương pháp giải - Xem chi tiết
Dựa vào hàm số đạo hàm để tìm từng đại lượng sau đó thay số
Lời giải chi tiết
a) Vận tốc tức thời của con lắc: \(v(t) = - 4\pi \sin \left( {\pi t - \frac{{2\pi }}{3}} \right)\)
Gia tốc tức thời của con lắc: \(a(t) = - 4{\pi ^2}\cos \left( {\pi t - \frac{{2\pi }}{3}} \right)\)
b) Tại vận tốc tức thời của con lắc bằng 0, ta có:
\( - 4\pi \sin \left( {\pi t - \frac{{2\pi }}{3}} \right) = 0 \Leftrightarrow \sin \left( {\pi t - \frac{{2\pi }}{3}} \right) = 0 \Leftrightarrow \pi t - \frac{{2\pi }}{3} = 0 \Leftrightarrow t = \frac{2}{3}\)
Với \(t = \frac{2}{3} \Rightarrow a(t) = - \,4{\pi ^2}\cos \left( {\pi .\frac{2}{3} - \frac{2}{3}\pi } \right) = - \,4{\pi ^2}\)
Bài 6 trang 76 SGK Toán 11 tập 2 - Cánh Diều là một bài tập quan trọng trong chương trình học, giúp học sinh củng cố kiến thức về hàm số lượng giác. Dưới đây là lời giải chi tiết và hướng dẫn giải bài tập này:
Bài 6 yêu cầu giải các phương trình lượng giác sau:
a) sin(x) = 1/2
Phương trình sin(x) = 1/2 có nghiệm là:
b) cos(x) = -√3/2
Phương trình cos(x) = -√3/2 có nghiệm là:
c) tan(x) = 1
Phương trình tan(x) = 1 có nghiệm là:
d) cot(x) = 0
Phương trình cot(x) = 0 có nghiệm là:
Để giải các phương trình lượng giác khác, bạn cần:
Giải phương trình sin(2x) = √2/2
Ta có:
Khi giải phương trình lượng giác, cần chú ý đến điều kiện xác định của phương trình và sử dụng đúng công thức nghiệm tổng quát. Việc kiểm tra lại nghiệm là rất quan trọng để đảm bảo tính chính xác của kết quả.
Để hiểu rõ hơn về hàm số lượng giác và các phương pháp giải phương trình lượng giác, bạn có thể tham khảo thêm:
Hy vọng với lời giải chi tiết và hướng dẫn trên, các bạn học sinh có thể tự tin giải Bài 6 trang 76 SGK Toán 11 tập 2 - Cánh Diều và các bài tập tương tự. Chúc các bạn học tốt!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập