1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Bài 2 trang 71 SGK Toán 11 tập 2 - Cánh Diều

Bài 2 trang 71 SGK Toán 11 tập 2 - Cánh Diều

Bài 2 trang 71 SGK Toán 11 tập 2 - Cánh Diều

Bài 2 thuộc chương trình Toán 11 tập 2, sách Cánh Diều, tập trung vào việc rèn luyện kỹ năng giải bài toán liên quan đến đạo hàm của hàm số. Bài tập này yêu cầu học sinh vận dụng các kiến thức đã học để tính đạo hàm và giải các bài toán thực tế.

tusach.vn cung cấp lời giải chi tiết, dễ hiểu, giúp học sinh nắm vững kiến thức và phương pháp giải bài tập hiệu quả.

Cho \(u = u(x),\,v = v(x),\,w = w(x)\) là các hàm số có đạo hàm tại điểm x thuộc khoảng xác định.

Đề bài

Cho \(u = u(x),\,v = v(x),\,w = w(x)\) là các hàm số có đạo hàm tại điểm x thuộc khoảng xác định. Chứng minh rằng \((u\,.\,v\,.\,w)' = u'\,.\,v\,.\,w + u\,.\,v'\,.\,w + u\,.\,v\,.\,w'\)

Phương pháp giải - Xem chi tiếtBài 2 trang 71 SGK Toán 11 tập 2 - Cánh Diều 1

Dựa vào đạo hàm hợp và các tính chất để tính

Lời giải chi tiết

Đặt: \(g(x) = u(x).v(x),\,\,f(x) = g(x).w(x)\)

Ta có:

\(f'(x) = g'(x).w(x) + g(x).w'(x) = \left( {u.v} \right)'.w(x) + (uv).w'(x) = \left( {u'v + uv'} \right).w + (uv).w'\)\( = u'vw + uv'w + uvw'\)

Bài 2 trang 71 SGK Toán 11 tập 2 - Cánh Diều: Giải chi tiết và hướng dẫn

Bài 2 trang 71 SGK Toán 11 tập 2 - Cánh Diều là một bài tập quan trọng trong chương trình học, giúp học sinh củng cố kiến thức về đạo hàm và ứng dụng của nó. Dưới đây là lời giải chi tiết và hướng dẫn giải bài tập này:

Nội dung bài tập

Bài 2 yêu cầu tính đạo hàm của các hàm số sau:

  • a) y = x3 - 3x2 + 2x - 5
  • b) y = (x2 + 1)(x - 2)
  • c) y = (x2 + 3x + 1) / (x + 1)
  • d) y = sin(2x) + cos(x)

Lời giải chi tiết

a) y = x3 - 3x2 + 2x - 5

Áp dụng công thức đạo hàm của tổng và hiệu, ta có:

y' = 3x2 - 6x + 2

b) y = (x2 + 1)(x - 2)

Áp dụng công thức đạo hàm của tích, ta có:

y' = (2x)(x - 2) + (x2 + 1)(1) = 2x2 - 4x + x2 + 1 = 3x2 - 4x + 1

c) y = (x2 + 3x + 1) / (x + 1)

Áp dụng công thức đạo hàm của thương, ta có:

y' = [(2x + 3)(x + 1) - (x2 + 3x + 1)(1)] / (x + 1)2 = (2x2 + 5x + 3 - x2 - 3x - 1) / (x + 1)2 = (x2 + 2x + 2) / (x + 1)2

d) y = sin(2x) + cos(x)

Áp dụng công thức đạo hàm của hàm lượng giác, ta có:

y' = 2cos(2x) - sin(x)

Lưu ý khi giải bài tập

  • Nắm vững các công thức đạo hàm cơ bản.
  • Áp dụng đúng công thức đạo hàm của tổng, hiệu, tích, thương.
  • Chú ý đến việc sử dụng công thức đạo hàm của hàm hợp.
  • Kiểm tra lại kết quả sau khi tính toán.

Ứng dụng của đạo hàm

Đạo hàm có rất nhiều ứng dụng trong toán học và các lĩnh vực khác, bao gồm:

  • Tìm cực trị của hàm số.
  • Khảo sát sự biến thiên của hàm số.
  • Tính tốc độ thay đổi của một đại lượng.
  • Giải các bài toán tối ưu hóa.

Bài tập tương tự

Để rèn luyện thêm kỹ năng giải bài tập về đạo hàm, bạn có thể tham khảo các bài tập tương tự trong SGK Toán 11 tập 2 - Cánh Diều và các tài liệu tham khảo khác.

tusach.vn hy vọng với lời giải chi tiết và hướng dẫn trên, bạn đã hiểu rõ cách giải Bài 2 trang 71 SGK Toán 11 tập 2 - Cánh Diều. Chúc bạn học tập tốt!

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN