Bài 4 trang 40 SGK Toán 11 Tập 1 - Cánh Diều là bài tập thuộc chương Hàm số lượng giác. Bài tập này yêu cầu học sinh vận dụng kiến thức về hàm số lượng giác để giải quyết các bài toán thực tế.
tusach.vn cung cấp lời giải chi tiết, dễ hiểu, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.
Số giờ có ánh sáng mặt trời của một thành phố A ở vĩ độ (40^circ ) Bắc
Đề bài
Số giờ có ánh sáng mặt trời của một thành phố A ở vĩ độ \(40^\circ \) Bắc trong ngày thứ t của một năm không nhuận được cho bởi hàm số:\(d\left( t \right) = 3\sin \left[ {\frac{\pi }{{182}}\left( {t - 80} \right)} \right] + 12\) với \(t \in \mathbb{Z}\) và \(0 < t \le 365\)
a) Thành phố A có đúng 12 giờ có ánh sáng mặt trời vào ngày nào trong năm?
b) Vào ngày nào trong năm thì thành phố A có đúng 9 giờ có ánh sáng mặt trời?
c) Vào ngày nào trong năm thì thành phố A có đúng 15 giờ có ánh sáng mặt trời?
Phương pháp giải - Xem chi tiết
Sử dụng công thức tổng quát để giải phương trình hàm số sin.
Lời giải chi tiết
a) Thành phố A có đúng 12 giờ có ánh sáng mặt trời thì d(t) = 12.
Khi đó
\(\begin{array}{l}12 = 3\sin \left[ {\frac{\pi }{{182}}\left( {t - 80} \right)} \right] + 12\\ \Leftrightarrow \sin \left[ {\frac{\pi }{{182}}\left( {t - 80} \right)} \right] = 0\\ \Leftrightarrow \sin \left[ {\frac{\pi }{{182}}\left( {t - 80} \right)} \right] = \sin 0\\ \Leftrightarrow \frac{\pi }{{182}}\left( {t - 80} \right) = k\pi \\ \Leftrightarrow t = 80 + 182k;k \in Z\end{array}\)
Mà \(t \in \mathbb{Z}\) và \(0 < t \le 365\) nên
\(\begin{array}{l}0 < 80 + 182k \le 365\\ \Rightarrow 0 \le k \le 1,56\end{array}\)
Suy ra \(k \in \left\{ {0;1} \right\}\)
Khi đó \(t \in \left\{ {80;262} \right\}\)
Vậy Thành phố A có đúng 12 giờ có ánh sáng mặt trời vào ngày thứ 80 và 262 trong năm
b) Thành phố A có đúng 9 giờ có ánh sáng mặt trời thì d(t) = 9.
Khi đó
\(\begin{array}{l}9 = 3\sin \left[ {\frac{\pi }{{182}}\left( {t - 80} \right)} \right] + 12\\ \Leftrightarrow \sin \left[ {\frac{\pi }{{182}}\left( {t - 80} \right)} \right] = - 1\\ \Leftrightarrow \sin \left[ {\frac{\pi }{{182}}\left( {t - 80} \right)} \right] = \sin \left( { - \frac{\pi }{2}} \right)\\ \Leftrightarrow \frac{\pi }{{182}}(t - 80) = - \frac{\pi }{2} + k2\pi \\ \Leftrightarrow t = - 11 + 364k;k \in Z\end{array}\)
Mà \(t \in \mathbb{Z}\) và \(0 < t \le 365\) nên
\(\begin{array}{l}0 < - 11 + 364k \le 365\\ \Rightarrow 0 < k \le 1,03\end{array}\).
Suy ra \(k= 1\).
Khi đó \(t= - 11 + 364.1 = 353\).
Vậy Thành phố A có đúng 9 giờ có ánh sáng mặt trời vào ngày thứ 353 trong năm.
c) Thành phố A có đúng 15 giờ có ánh sáng mặt trời thì d(t) = 15.
Khi đó
\(\begin{array}{l}15 = 3\sin \left[ {\frac{\pi }{{182}}\left( {t - 80} \right)} \right] + 12\\ \Leftrightarrow \sin \left[ {\frac{\pi }{{182}}\left( {t - 80} \right)} \right] = 1\\ \Leftrightarrow \sin \left[ {\frac{\pi }{{182}}\left( {t - 80} \right)} \right] = \sin \left( {\frac{\pi }{2}} \right)\\ \Leftrightarrow \frac{\pi }{{182}}(t - 80) = \frac{\pi }{2} + k2\pi \\ \Leftrightarrow t = 171 + 364k;k \in Z\end{array}\)
Mà \(t \in \mathbb{Z}\) và \(0 < t \le 365\) nên
\(\begin{array}{l}0 < 171 + 364k \le 365\\ \Rightarrow 0 \le k \le 0,53\end{array}\).
Suy ra \(k=0\).
Khi đó \(t= 171 + 364.0 = 171\).
Vậy Thành phố A có đúng 15 giờ có ánh sáng mặt trời vào ngày thứ 171 trong năm.
Bài 4 trang 40 SGK Toán 11 Tập 1 - Cánh Diều là một bài tập quan trọng trong chương Hàm số lượng giác, giúp học sinh củng cố kiến thức về các hàm số lượng giác cơ bản và ứng dụng của chúng. Dưới đây là lời giải chi tiết và hướng dẫn giải bài tập này:
Bài 4 yêu cầu học sinh giải các bài toán liên quan đến việc xác định tập xác định của hàm số lượng giác, tìm giá trị của hàm số tại một điểm cụ thể, và vẽ đồ thị của hàm số lượng giác.
Để giải bài tập này, học sinh cần nắm vững các kiến thức sau:
Ví dụ: Giả sử bài tập yêu cầu tìm tập xác định của hàm số y = tan(2x). Ta biết rằng hàm số tan(x) có tập xác định là R \ {kπ, k ∈ Z}. Do đó, tập xác định của hàm số y = tan(2x) là R \ {kπ/2, k ∈ Z}.
Ngoài việc giải bài tập, học sinh nên tìm hiểu thêm về các ứng dụng của hàm số lượng giác trong thực tế, chẳng hạn như trong vật lý, kỹ thuật, và khoa học máy tính. Việc hiểu rõ các ứng dụng này sẽ giúp học sinh tăng cường sự hứng thú và động lực học tập.
Để rèn luyện kỹ năng giải bài tập về hàm số lượng giác, học sinh có thể làm thêm các bài tập tương tự trong SGK và các tài liệu tham khảo khác. tusach.vn cung cấp nhiều bài tập luyện tập và đáp án chi tiết để giúp học sinh tự học và nâng cao kiến thức.
Khi giải bài tập về hàm số lượng giác, học sinh cần chú ý đến đơn vị đo góc (độ hoặc radian) và sử dụng máy tính bỏ túi một cách hợp lý. Ngoài ra, việc vẽ đồ thị của hàm số lượng giác cũng rất quan trọng để hiểu rõ tính chất và ứng dụng của hàm số.
Hy vọng với lời giải chi tiết và hướng dẫn trên, các em học sinh sẽ tự tin giải quyết Bài 4 trang 40 SGK Toán 11 Tập 1 - Cánh Diều một cách hiệu quả. Chúc các em học tốt!
| Hàm số | Tập xác định |
|---|---|
| y = sin(x) | R |
| y = cos(x) | R |
| y = tan(x) | R \ {kπ, k ∈ Z} |
| y = cot(x) | R \ {kπ, k ∈ Z} |
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập