1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Bài 7 trang 80 SGK Toán 11 tập 1 - Cánh Diều

Bài 7 trang 80 SGK Toán 11 tập 1 - Cánh Diều

Bài 7 trang 80 SGK Toán 11 tập 1 - Cánh Diều: Giải tích

Bài 7 trang 80 SGK Toán 11 tập 1 - Cánh Diều thuộc chương trình Giải tích, tập trung vào việc ôn tập về đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số. Bài tập này yêu cầu học sinh vận dụng kiến thức đã học để giải quyết các bài toán thực tế.

tusach.vn cung cấp lời giải chi tiết, dễ hiểu, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải bài tập.

Cho một tam giác đều ABC cạnh \(a\). Tam giác \({A_1}{B_1}{C_1}\) có các đỉnh là trung điểm các cạnh của tam giác ABC, tam giác \({A_2}{B_2}{C_2}\) có các đỉnh là trung điểm các cạnh của tam giác \({A_1}{B_1}{C_1}, \ldots \), tam giác \({A_{n + 1}}{B_{n + 1}}{C_{n + 1}}\) có các đỉnh là trung điểm các cạnh của tam giác \({A_n}{B_n}{C_n}, \ldots \)

Đề bài

Cho một tam giác đều ABC cạnh \(a\). Tam giác \({A_1}{B_1}{C_1}\) có các đỉnh là trung điểm các cạnh của tam giác ABC, tam giác \({A_2}{B_2}{C_2}\) có các đỉnh là trung điểm các cạnh của tam giác \({A_1}{B_1}{C_1}, \ldots \), tam giác \({A_{n + 1}}{B_{n + 1}}{C_{n + 1}}\) có các đỉnh là trung điểm các cạnh của tam giác \({A_n}{B_n}{C_n}, \ldots \) Gọi \({p_1},{p_2}, \ldots ,{p_n}, \ldots \) và \({S_1},{S_2}, \ldots ,{S_n}, \ldots \) theo thứ tự là chu vi và diện tích của các tam giác \({A_1}{B_1}{C_1},{A_2}{B_2}{C_2}, \ldots ,{A_n}{B_n}{C_n}, \ldots \).

a) Tìm giới hạn của các dãy số \(\left( {{p_n}} \right)\) và \(\left( {{S_n}} \right)\).

b) Tìm các tổng \({p_1} + {p_2} + \ldots + {p_n} + \ldots \) và \({S_1} + {S_2} + \ldots + {S_n} + \ldots \).

Phương pháp giải - Xem chi tiếtBài 7 trang 80 SGK Toán 11 tập 1 - Cánh Diều 1

Sử dụng công thức tính tổng cấp số nhân lùi vô hạn \(S = \frac{{{u_1}}}{{1 - q}}\).

Chu vi tam giác bằng tổng ba cạnh.

Diện tích tam giác bằng một nửa chiều cao nhân cạnh đáy tương ứng.

Lời giải chi tiết

Bài 7 trang 80 SGK Toán 11 tập 1 - Cánh Diều 2

+) \(\left( {{{\rm{p}}_{\rm{n}}}} \right)\) là dãy số chu vi của các tam giác theo thứ tự \({\rm{ABC}},{{\rm{A}}_1}\;{{\rm{B}}_1}{{\rm{C}}_1}, \ldots \)

Ta có:

 \({{\rm{p}}_2} = {p_{\Delta {A_1}{B_1}{C_1}}} = \frac{a}{2} + \frac{a}{2} + \frac{a}{2} = \frac{1}{2} \cdot (3a) = \frac{1}{2} \cdot {p_1}\)

\(\begin{array}{l}{{\rm{p}}_3} = {p_{\Delta {A_2}{B_2}{C_2}}} = \frac{a}{4} + \frac{a}{4} + \frac{a}{4} = {\left( {\frac{1}{2}} \right)^2} \cdot (3a) = {\left( {\frac{1}{2}} \right)^2} \cdot {p_1}\\ \ldots \\{p_{\Delta {A_n}{B_n}{C_n}}} = {\left( {\frac{1}{2}} \right)^{n - 1}} \cdot {p_1}\\...\end{array}\)

\( \Rightarrow \mathop {\lim }\limits_{n \to \infty } {p_n} = \mathop {\lim }\limits_{n \to \infty } \left( {{{\left( {\frac{1}{2}} \right)}^{n - 1}} \cdot (3a)} \right) = \mathop {\lim }\limits_{n \to \infty } {\left( {\frac{1}{2}} \right)^{n - 1}} \cdot \mathop {\lim }\limits_{n \to \infty } (3a) = 0.3a = 0.\)

+)\(\left( {{{\rm{S}}_n}} \right)\) là dãy số diện tích của các tam giác theo thứ tự \({\rm{ABC}},{{\rm{A}}_1}\;{{\rm{B}}_1}{{\rm{C}}_1}, \ldots \)

Gọi \(h\) là chiều cao của tam giác \({\rm{ABC}}\) và \({\rm{h}} = \frac{{a\sqrt 3 }}{2}\).

Ta có:

\(\begin{array}{l}{{\rm{S}}_3} = {S_{\Delta {A_2}{B_2}{C_2}}} = \frac{1}{2} \cdot \frac{a}{4} \cdot \frac{h}{4} = {\left( {\frac{1}{4}} \right)^2} \cdot \left( {\frac{1}{2}ah} \right) = {\left( {\frac{1}{4}} \right)^2} \cdot {S_1}\\ \ldots \\{S_{\Delta {A_n}{B_n}{C_n}}} = {\left( {\frac{1}{4}} \right)^{n - 1}} \cdot {S_1}\\ \ldots \end{array}\)

\( \Rightarrow \mathop {\lim }\limits_{n \to \infty } {S_n} = \mathop {\lim }\limits_{n \to \infty } \left( {{{\left( {\frac{1}{4}} \right)}^{n - 1}} \cdot {S_1}} \right) = \mathop {\lim }\limits_{n \to \infty } {\left( {\frac{1}{4}} \right)^{n - 1}} \cdot \mathop {\lim }\limits_{n \to \infty } \left( {\frac{1}{2}ah} \right) = 0 \cdot \frac{1}{2}ah = 0\).

b) +) Ta có \(\left( {{{\rm{p}}_{\rm{n}}}} \right)\) là một cấp số nhân lùi vô hạn với số hạng đầu \({{\rm{p}}_1}\) = 3a và công bội \({\rm{q}} = \frac{1}{2}\) thỏa mãn \(|q| < 1\) có tổng:

\({p_1} + {p_2} + \ldots + {p_n} + \ldots = \frac{{3a}}{{1 - \frac{1}{2}}} = 6a\)

+) Ta có \(\left( {{{\rm{S}}_n}} \right)\) là một cấp số nhân lùi vô hạn với số hạng đầu \({{\rm{S}}_1} = \frac{1}{2}ah\) và công bội \(q = \frac{1}{4}\) thỏa mãn \(|q| < 1\) có tổng:

\({S_1} + {S_2} + \ldots + {S_n} + \ldots = \frac{{\frac{1}{2}ah}}{{1 - \frac{1}{4}}} = \frac{2}{3}ah = \frac{2}{3}a.\frac{{a\sqrt 3 }}{2} = \frac{{{a^2}\sqrt 3 }}{3}\)

Bài 7 trang 80 SGK Toán 11 tập 1 - Cánh Diều: Giải chi tiết và hướng dẫn

Bài 7 trang 80 SGK Toán 11 tập 1 - Cánh Diều là một bài tập quan trọng trong chương trình học, giúp học sinh củng cố kiến thức về đạo hàm và ứng dụng của nó. Dưới đây là lời giải chi tiết và hướng dẫn giải bài tập này:

Nội dung bài tập

Bài tập yêu cầu chúng ta tìm đạo hàm của các hàm số sau:

  1. f(x) = 3x2 - 5x + 2
  2. g(x) = x3 + 2x2 - x + 1
  3. h(x) = (x2 + 1)(x - 2)
  4. k(x) = (2x + 1) / (x - 1)

Lời giải chi tiết

1. Giải f(x) = 3x2 - 5x + 2

Áp dụng công thức đạo hàm của tổng và tích, ta có:

f'(x) = d/dx (3x2) - d/dx (5x) + d/dx (2)

f'(x) = 6x - 5 + 0

f'(x) = 6x - 5

2. Giải g(x) = x3 + 2x2 - x + 1

Áp dụng công thức đạo hàm của tổng và tích, ta có:

g'(x) = d/dx (x3) + d/dx (2x2) - d/dx (x) + d/dx (1)

g'(x) = 3x2 + 4x - 1 + 0

g'(x) = 3x2 + 4x - 1

3. Giải h(x) = (x2 + 1)(x - 2)

Áp dụng công thức đạo hàm của tích, ta có:

h'(x) = d/dx (x2 + 1) * (x - 2) + (x2 + 1) * d/dx (x - 2)

h'(x) = (2x) * (x - 2) + (x2 + 1) * 1

h'(x) = 2x2 - 4x + x2 + 1

h'(x) = 3x2 - 4x + 1

4. Giải k(x) = (2x + 1) / (x - 1)

Áp dụng công thức đạo hàm của thương, ta có:

k'(x) = [d/dx (2x + 1) * (x - 1) - (2x + 1) * d/dx (x - 1)] / (x - 1)2

k'(x) = [2 * (x - 1) - (2x + 1) * 1] / (x - 1)2

k'(x) = (2x - 2 - 2x - 1) / (x - 1)2

k'(x) = -3 / (x - 1)2

Lưu ý khi giải bài tập

  • Nắm vững các công thức đạo hàm cơ bản.
  • Áp dụng đúng công thức đạo hàm của tổng, tích, thương và hàm hợp.
  • Kiểm tra lại kết quả sau khi tính toán.

Ứng dụng của đạo hàm

Đạo hàm có rất nhiều ứng dụng trong toán học và các lĩnh vực khác, bao gồm:

  • Tìm cực trị của hàm số.
  • Khảo sát sự biến thiên của hàm số.
  • Tính tốc độ thay đổi của một đại lượng.
  • Giải các bài toán tối ưu hóa.

Hy vọng lời giải chi tiết này sẽ giúp bạn hiểu rõ hơn về Bài 7 trang 80 SGK Toán 11 tập 1 - Cánh Diều. Hãy luyện tập thêm nhiều bài tập khác để nâng cao kỹ năng giải toán của mình!

Tìm kiếm liên quan:

  • Giải toán 11 tập 1 cánh diều
  • Bài tập toán 11 cánh diều
  • Đáp án toán 11 tập 1 cánh diều
  • Đạo hàm toán 11

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN