Chào mừng các em học sinh đến với lời giải chi tiết mục 1 trang 39, 40 SGK Toán 11 tập 2 - Cánh Diều trên tusach.vn.
Bài học này tập trung vào việc ôn tập chương 3: Hàm số lượng giác và ứng dụng của hàm số lượng giác.
Chúng tôi sẽ cung cấp đáp án chính xác, phương pháp giải rõ ràng, giúp các em hiểu sâu sắc kiến thức và tự tin giải các bài tập tương tự.
Xét bài toán ở phần mở đầu.
Xét bài toán ở phần mở đầu.
a) Tính số tiền doanh nghiệp đó có được sau 1 năm, 2 năm, 3 năm
b) Dự đoán công thức tính số tiền doanh nghiệp đó có được sau n năm
Phương pháp giải:
Áp dụng kiến thức đã học để giải bài toán
Lời giải chi tiết:
a) Số tiền doanh nghiệp đó có được
- Sau 1 năm: \(1\,\,000\,\,000\,\,\,000 + 1\,\,000\,\,000\,\,\,000 \times 6,2\% = 1\,\,062\,\,000\,\,\,000\) (đồng)
- Sau 2 năm: \(1\,\,062\,\,000\,\,000 + 1\,\,062\,\,000\,\,000 \times 6,2\% = 1\,\,127\,\,844\,\,000\) (đồng)
- Sau 3 năm: \(1\,\,127\,\,844\,\,000 + 1\,\,127\,\,844\,\,000 \times 6,2\% = 1\,\,197\,\,770\,\,328\) (đồng)
b) Dự đoán công thức tính số tiền doanh nghiệp đó có được sau n năm:
\(A = 1\,\,000\,\,000\,\,000 \times {\left( {1 + 6,2\% } \right)^n}\)
Cho hai ví dụ về hàm số mũ
Phương pháp giải:
Dựa vào định nghĩa hàm số mũ để cho ví dụ
Lời giải chi tiết:
\(y = {3^x};y = {5^{x + 3}}\)
Cho hàm số mũ \(y = {2^x}\)
a) Tìm giá trị y tương ứng với giá trị của x trong bảng sau:

b) Trong mặt phẳng tọa độ Oxy, hãy biểu diễn các điểm trong bảng giá trị ở câu a.
Bằng cách tương tự, lấy nhiều điểm \(\left( {x;{2^x}} \right)\) với \(x \in \mathbb{R}\) và nối lại, ta được đồ thị hàm số \(y = {2^x}\) (Hình 1)

c) Cho biết tọa độ giao điểm của đồ thị hàm số \(y = {2^x}\) với trục tung và vị trí của đồ thị hàm số đó so với trục hoành.
d) Quan sát đồ thị hàm số \(y = {2^x}\), nêu nhận xét về:
Phương pháp giải:
Áp dụng kiến thức đã học về giới hạn và lũy thừa để trả lời câu hỏi
Lời giải chi tiết:
a) \(y = {2^x}\)

b) Biểu diễn các điểm ở câu a:

c) Tọa độ giao điểm của đồ thị hàm số \(y = {2^x}\) với trục tung là (0;1)
Đồ thị hàm số đó không cắt trục hoành
d) \(\mathop {\lim }\limits_{x \to + \infty } {2^x} = + \infty ;\,\,\mathop {\lim }\limits_{x \to - \infty } {2^x} = 0\)
Hàm số \(y = {2^x}\) đồng biến trên toàn \(\mathbb{R}\)
Bảng biến thiên của hàm số:

Cho hàm số mũ \(y = {\left( {\frac{1}{2}} \right)^x}\)
a) Tìm giá trị y tương ứng với giá trị của x trong bảng sau:

b, Trong mặt phẳng tọa độ Oxy, hãy biểu diễn các điểm trong bảng giá trị ở câu a.
Bằng cách tương tự, lấy nhiều điểm \(\left( {x;{{\left( {\frac{1}{2}} \right)}^x}} \right)\) với \(x \in \mathbb{R}\) và nối lại, ta được đồ thị hàm số \(y = {\left( {\frac{1}{2}} \right)^x}\) (Hình 2)

c, Cho biết tọa độ giao điểm của đồ thị hàm số \(y = {\left( {\frac{1}{2}} \right)^x}\) với trục tung và vị trí của đồ thị hàm số đó so với trục hoành.
d, Quan sát đồ thị hàm số \(y = {\left( {\frac{1}{2}} \right)^x}\), nêu nhận xét về:
Phương pháp giải:
Áp dụng kiến thức đã học về giới hạn và lũy thừa để trả lời câu hỏi
Lời giải chi tiết:
a) \(y = {\left( {\frac{1}{2}} \right)^x}\)

a) Biểu diễn các điểm ở câu a:

b) Tọa độ giao điểm của đồ thị hàm số \(y = {\left( {\frac{1}{2}} \right)^x}\) với trục tung là (0;1)
Đồ thị hàm số đó không cắt trục hoành
c) \(\mathop {\lim }\limits_{x \to + \infty } {\left( {\frac{1}{2}} \right)^x} = 0;\,\,\mathop {\lim }\limits_{x \to - \infty } {\left( {\frac{1}{2}} \right)^x} = + \infty \)
Hàm số \(y = {\left( {\frac{1}{2}} \right)^x}\) nghịch biến trên toàn \(\mathbb{R}\)
Bảng biến thiên của hàm số:

Lập bảng biến thiên và vẽ đồ thị hàm số \(y = {\left( {\frac{1}{3}} \right)^x}\)
Phương pháp giải:
Dựa vào đồ thị và bảng biến thiên của \(y = {\left( {\frac{1}{2}} \right)^x}\) để vẽ
Lời giải chi tiết:
\(\mathop {\lim }\limits_{x \to + \infty } {\left( {\frac{1}{3}} \right)^x} = 0;\,\,\mathop {\lim }\limits_{x \to - \infty } {\left( {\frac{1}{3}} \right)^x} = + \infty \)
Hàm số \(y = {\left( {\frac{1}{3}} \right)^x}\) nghịch biến trên toàn R
Bảng biến thiên của hàm số:

Đồ thị hàm số:


Mục 1 trang 39, 40 SGK Toán 11 tập 2 - Cánh Diều là phần ôn tập chương 3, đóng vai trò quan trọng trong việc củng cố kiến thức về hàm số lượng giác và ứng dụng của chúng. Việc nắm vững các khái niệm, định lý và kỹ năng giải bài tập trong chương này là nền tảng cho việc học tập các chương tiếp theo và chuẩn bị cho các kỳ thi quan trọng.
Mục 1 bao gồm các bài tập tổng hợp, yêu cầu học sinh vận dụng kiến thức đã học để giải quyết các vấn đề liên quan đến:
Dưới đây là hướng dẫn giải chi tiết các bài tập trong Mục 1 trang 39, 40 SGK Toán 11 tập 2 - Cánh Diều:
Đề bài: (Ví dụ: Tính giá trị của biểu thức A = sin(π/3) + cos(π/4)).
Lời giải:
Đề bài: (Ví dụ: Giải phương trình sin(x) = 1/2).
Lời giải:
Tusach.vn tự hào là địa chỉ tin cậy cung cấp lời giải chi tiết, chính xác và dễ hiểu cho các bài tập SGK Toán 11 tập 2 - Cánh Diều. Chúng tôi luôn cập nhật nội dung mới nhất và cung cấp các tài liệu học tập hữu ích khác để giúp các em học tập hiệu quả.
Hãy truy cập tusach.vn ngay hôm nay để khám phá thêm nhiều tài liệu học tập hữu ích và đồng hành cùng chúng tôi trên con đường chinh phục môn Toán!
| Chương | Nội dung chính |
|---|---|
| Chương 1 | Hàm số và đồ thị |
| Chương 2 | Phương trình và bất phương trình |
| Chương 3 | Hàm số lượng giác và ứng dụng |
| Nguồn: Sách giáo khoa Toán 11 tập 2 - Cánh Diều | |
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập