1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Bài 15 trang 57 SGK Toán 11 tập 2 - Cánh Diều

Bài 15 trang 57 SGK Toán 11 tập 2 - Cánh Diều

Bài 15 trang 57 SGK Toán 11 tập 2 - Cánh Diều: Giải tích

Bài 15 trang 57 SGK Toán 11 tập 2 thuộc chương trình Giải tích, tập trung vào việc luyện tập các kiến thức về đạo hàm của hàm số. Bài tập này giúp học sinh củng cố kỹ năng tính đạo hàm và ứng dụng đạo hàm để giải quyết các bài toán thực tế.

tusach.vn cung cấp lời giải chi tiết, dễ hiểu, giúp các em học sinh nắm vững kiến thức và tự tin làm bài tập.

Viết các biểu thức sau về lũy thừa cơ số a:

Đề bài

Viết các biểu thức sau về lũy thừa cơ số a:

a) \(A = \sqrt[3]{{5\sqrt {\frac{1}{5}} }};\,\,a = 5\)

b) \(B = \frac{{4\sqrt[5]{2}}}{{\sqrt[3]{4}}};\,\,a = \sqrt 2 \)

Phương pháp giải - Xem chi tiếtBài 15 trang 57 SGK Toán 11 tập 2 - Cánh Diều 1

Dựa vào tính chất lũy thừa để tính

Lời giải chi tiết

a) \(\sqrt[3]{{5\sqrt {\frac{1}{5}} }} = \sqrt[3]{{{{5.5}^{ - \frac{1}{2}}}}} = \sqrt[3]{{{5^{\frac{1}{2}}}}} = {\left( {{5^{\frac{1}{2}}}} \right)^{\frac{1}{3}}} = {5^{\frac{1}{6}}}\)

Vậy \(A = {a^{\frac{1}{6}}}\)

b) \(B = \frac{{4\sqrt[5]{2}}}{{\sqrt[3]{4}}} = \frac{{{2^2}{{.2}^{\frac{1}{5}}}}}{{{4^{\frac{1}{3}}}}} = \frac{{{2^{^{\frac{{11}}{5}}}}}}{{{2^{^{\frac{2}{3}}}}}} = {2^{^{\frac{{23}}{{15}}}}} = {\left( {\sqrt 2 } \right)^{^{\frac{{46}}{{15}}}}}\)

Vậy \(B = {a^{^{\frac{{46}}{{15}}}}}\)

Bài 15 trang 57 SGK Toán 11 tập 2 - Cánh Diều: Giải chi tiết và hướng dẫn

Bài 15 trang 57 SGK Toán 11 tập 2 - Cánh Diều là một bài tập quan trọng trong chương trình học, giúp học sinh rèn luyện kỹ năng tính đạo hàm của hàm số. Dưới đây là lời giải chi tiết và hướng dẫn giải bài tập này:

Nội dung bài tập

Bài tập yêu cầu tính đạo hàm của các hàm số sau:

  • a) y = x3 - 3x2 + 2x - 5
  • b) y = (x2 + 1)(x - 2)
  • c) y = (x2 + 3x + 1) / (x + 1)
  • d) y = sin(2x + 1)

Lời giải chi tiết

a) y = x3 - 3x2 + 2x - 5

Áp dụng công thức đạo hàm của tổng và hiệu, ta có:

y' = 3x2 - 6x + 2

b) y = (x2 + 1)(x - 2)

Áp dụng công thức đạo hàm của tích, ta có:

y' = (2x)(x - 2) + (x2 + 1)(1) = 2x2 - 4x + x2 + 1 = 3x2 - 4x + 1

c) y = (x2 + 3x + 1) / (x + 1)

Áp dụng công thức đạo hàm của thương, ta có:

y' = [(2x + 3)(x + 1) - (x2 + 3x + 1)(1)] / (x + 1)2 = (2x2 + 5x + 3 - x2 - 3x - 1) / (x + 1)2 = (x2 + 2x + 2) / (x + 1)2

d) y = sin(2x + 1)

Áp dụng công thức đạo hàm của hàm hợp, ta có:

y' = cos(2x + 1) * 2 = 2cos(2x + 1)

Lưu ý khi giải bài tập

  • Nắm vững các công thức đạo hàm cơ bản.
  • Áp dụng đúng công thức đạo hàm của tổng, hiệu, tích, thương và hàm hợp.
  • Kiểm tra lại kết quả sau khi tính toán.

Mở rộng kiến thức

Để hiểu sâu hơn về đạo hàm, các em có thể tham khảo thêm các tài liệu sau:

  • Sách giáo khoa Toán 11 tập 2 - Cánh Diều
  • Các bài giảng trực tuyến về đạo hàm
  • Các bài tập luyện tập về đạo hàm

tusach.vn hy vọng với lời giải chi tiết này, các em học sinh sẽ tự tin hơn khi giải các bài tập về đạo hàm. Chúc các em học tốt!

Hàm sốĐạo hàm
y = x3 - 3x2 + 2x - 5y' = 3x2 - 6x + 2
y = (x2 + 1)(x - 2)y' = 3x2 - 4x + 1
y = (x2 + 3x + 1) / (x + 1)y' = (x2 + 2x + 2) / (x + 1)2
y = sin(2x + 1)y' = 2cos(2x + 1)

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN