Bài 8 thuộc chương trình Toán 11 tập 2, sách Cánh Diều, tập trung vào việc ôn tập chương 4: Hàm số lượng giác. Bài tập này yêu cầu học sinh vận dụng kiến thức về các hàm số lượng giác cơ bản, tính chất của chúng và các công thức liên quan để giải quyết các bài toán cụ thể.
tusach.vn cung cấp lời giải chi tiết, dễ hiểu, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán hiệu quả.
Hình 101 là hình chụp đền Kukulcan, là một kim tự tháp Trung Mỹ nằm ở khu di tích Chichen Itza
Đề bài
Hình 101 là hình chụp đền Kukulcan, là một kim tự tháp Trung Mỹ nằm ở khu di tích Chichen Itza, Mexico, được người Maya xây vào khoảng từ thế kỉ IX đến thế kỉ XII. Phần thân của đền, không bao gồm ngôi đền nằm phía trên, có dạng một khối chóp cụt tứ giác đều (không tính cầu thang và coi các mặt bên là phẳng) với độ dài đáy dưới là 55,3 m, chiều cao là 24 m, góc giữa cạnh bên và mặt phẳng đáy là khoảng \({47^ \circ }\).

(Nguồn: https://vi.wikipedia.org)
Tính thể tích phần thân ngôi đền có dạng khối chóp cụt tứ giác đều đó theo đơn vị mét khối (làm tròn kết quả đến hàng phần trăm).
Phương pháp giải - Xem chi tiết
Sử dụng công thức tính thể tích khối chóp cụt đều: \(V = \frac{1}{3}h\left( {S + \sqrt {SS'} + S'} \right)\).
Lời giải chi tiết

Mô hình hoá phần thân của đền bằng cụt chóp tứ giác đều \(ABCD.A'B'C'D'\) với \(O,O'\) là tâm của hai đáy. Vậy \(AB = 55,3;OO' = 24;\left( {CC',\left( {ABCD} \right)} \right) = {47^ \circ }\)
\(ABCD\) là hình vuông
\( \Rightarrow AC = \sqrt {A{B^2} + B{C^2}} = 55,3\sqrt 2 \Rightarrow CO = \frac{1}{2}AC = 27,65\sqrt 2 \)
Kẻ \(C'H \bot OC\left( {H \in OC} \right) \Rightarrow C'H\parallel OO' \Rightarrow C'H \bot \left( {ABCD} \right)\)
\( \Rightarrow \left( {CC',\left( {ABCD} \right)} \right) = \left( {CC',CH} \right) = \widehat {HCC'} = {47^ \circ }\)
\(OHC'O'\) là hình chữ nhật \( \Rightarrow OO' = C'H = 24,CH = O'C'\)
\(\Delta CC'H\) vuông tại \(H \Rightarrow CH = \frac{{C'H}}{{\tan \widehat {HCC'}}} = \frac{{24}}{{\tan {{47}^ \circ }}} \approx 22,38\)
\(O'C' = OH = CO - CH \approx 16,72 \Rightarrow A'C' = 2O'C' = 33,44\)
\(A'B'C'D'\) là hình vuông \( \Rightarrow A'B' = \frac{{A'C'}}{{\sqrt 2 }} \approx 23,65\)
Diện tích đáy lớn là: \(S = A{B^2} = 55,{3^2} = 3058,09\left( {{m^2}} \right)\)
Diện tích đáy bé là: \(S' = A'B{'^2} = 23,{65^2} = 559,3225\left( {{m^2}} \right)\)
Thể tích hình chóp cụt là:
\(V = \frac{1}{3}h\left( {S + \sqrt {SS'} + S'} \right)\)
\(= \frac{1}{3}.24\left( {3058,09 + \sqrt {3058,09.559,3225} + 559,3225} \right)\)
\(\approx 39402,06\left( {{m^3}} \right)\)
Vậy thể tích phần thân ngôi đền có dạng khối chóp cụt tứ giác đều đó là \(39402,06\left( {{m^3}} \right)\)
Bài 8 trang 116 SGK Toán 11 tập 2 - Cánh Diều là một bài tập quan trọng trong chương trình ôn tập chương 4 về hàm số lượng giác. Bài tập này giúp học sinh củng cố kiến thức về các hàm số lượng giác, các phép biến đổi lượng giác và ứng dụng của chúng trong giải toán.
Bài 8 thường bao gồm các dạng bài tập sau:
Để giải Bài 8 trang 116 SGK Toán 11 tập 2 - Cánh Diều một cách hiệu quả, học sinh cần:
Ví dụ: Giải phương trình lượng giác: 2sin(x) - 1 = 0
Lời giải:
2sin(x) - 1 = 0
sin(x) = 1/2
x = π/6 + k2π hoặc x = 5π/6 + k2π (k ∈ Z)
tusach.vn cung cấp:
Hãy truy cập tusach.vn ngay hôm nay để học Toán 11 hiệu quả và đạt kết quả cao!
| Công thức | Mô tả |
|---|---|
| sin2(x) + cos2(x) = 1 | Công thức lượng giác cơ bản |
| tan(x) = sin(x) / cos(x) | Công thức tính tan(x) |
| cot(x) = cos(x) / sin(x) | Công thức tính cot(x) |
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập