Bài 19 thuộc chương trình Giải tích lớp 11, tập trung vào việc ôn tập về đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số. Bài tập này yêu cầu học sinh vận dụng kiến thức đã học để giải quyết các bài toán thực tế.
tusach.vn cung cấp lời giải chi tiết, dễ hiểu, giúp học sinh nắm vững kiến thức và tự tin làm bài tập.
Giải mỗi phương trình sau:
Đề bài
Giải mỗi phương trình sau:
a) \({3^{{x^2} - 4x + 5}} = 9\)
b) \(0,{5^{2x - 4}} = 4\)
c) \({\log _3}(2x - 1) = 3\)
d) \(\log x + \log (x - 3) = 1\)
Phương pháp giải - Xem chi tiết
Dựa vào kiến thức giải phương trình logarit và phương trình mũ để làm bài
Lời giải chi tiết
a) \({3^{{x^2} - 4x + 5}} = 9 \Leftrightarrow {x^2} - 4x + 5 = 2 \Leftrightarrow {x^2} - 4x + 3 = 0 \Leftrightarrow \left( {x - 3} \right)\left( {x - 1} \right) = 0\)
\( \Leftrightarrow \left[ \begin{array}{l}x = 3\\x = 1\end{array} \right.\)
Vậy phương trình có nghiệm là \(x \in \left\{ {1;3} \right\}\)
b) \(0,{5^{2x - 4}} = 4 \Leftrightarrow 2x - 4 = {\log _{0,5}}4 \Leftrightarrow 2x = 2 \Leftrightarrow x = 1\)
Vậy phương trình có nghiệm là x = 1
c) \({\log _3}(2x - 1) = 3\) ĐK: \(2x - 1 > 0 \Leftrightarrow x > \frac{1}{2}\)
\( \Leftrightarrow 2x - 1 = 27 \Leftrightarrow x = 14\) (TMĐK)
Vậy phương trình có nghiệm là x = 14
d) \(\log x + \log (x - 3) = 1\) ĐK: \(x - 3 > 0 \Leftrightarrow x > 3\)
\(\begin{array}{l} \Leftrightarrow \log \left( {x.\left( {x - 3} \right)} \right) = 1\\ \Leftrightarrow {x^2} - 3x = 10\\ \Leftrightarrow {x^2} - 3x - 10 = 0\\ \Leftrightarrow \left( {x + 2} \right)\left( {x - 5} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = - 2 (loại) \,\,\,\\x = 5 (TMĐK) \,\,\,\,\,\,\,\end{array} \right.\end{array}\)
Vậy phương trình có nghiệm x = 5
Bài 19 trang 58 SGK Toán 11 tập 2 - Cánh Diều là một bài tập quan trọng trong chương trình học, giúp học sinh củng cố kiến thức về đạo hàm và ứng dụng của nó. Dưới đây là giải chi tiết và hướng dẫn giải bài tập này:
Bài 19 yêu cầu học sinh thực hiện các nhiệm vụ sau:
Để giải bài 19 trang 58 SGK Toán 11 tập 2 - Cánh Diều, học sinh cần nắm vững các kiến thức sau:
Dưới đây là giải chi tiết cho từng câu hỏi trong bài tập:
f'(x) = 3x2 - 6x + 2
g'(x) = 4x3 - 8x
Giải phương trình g'(x) = 0, ta được x = 0, x = √2, x = -√2
Lập bảng biến thiên của hàm số g(x) để xác định khoảng đồng biến, nghịch biến và cực trị.
h'(x) = 3x2 - 12x + 9
Giải phương trình h'(x) = 0, ta được x = 1, x = 3
Kiểm tra điều kiện cần và đủ để xác định cực đại, cực tiểu.
Đạo hàm có rất nhiều ứng dụng trong thực tế, bao gồm:
Việc nắm vững kiến thức về đạo hàm và ứng dụng của nó là rất quan trọng đối với học sinh lớp 11. Bài 19 trang 58 SGK Toán 11 tập 2 - Cánh Diều là một bài tập hữu ích giúp học sinh củng cố kiến thức và rèn luyện kỹ năng giải bài tập.
Hy vọng với lời giải chi tiết và hướng dẫn trên, các bạn học sinh có thể tự tin giải bài tập Bài 19 trang 58 SGK Toán 11 tập 2 - Cánh Diều. Chúc các bạn học tốt!
| Công thức đạo hàm cơ bản |
|---|
| (xn)' = nxn-1 |
| (sin x)' = cos x |
| (cos x)' = -sin x |
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập