1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Giải câu hỏi trắc nghiệm trang 91, 92, 93 sách bài tập toán 11 - Chân trời sáng tạo tập 1

Giải câu hỏi trắc nghiệm trang 91, 92, 93 sách bài tập toán 11 - Chân trời sáng tạo tập 1

Giải Bài Tập Toán 11 Chân Trời Sáng Tạo Tập 1 - Trang 91, 92, 93

Chào mừng các em học sinh đến với chuyên mục giải bài tập trắc nghiệm Toán 11 Chân Trời Sáng Tạo tập 1 trang 91, 92, 93 của tusach.vn.

Chúng tôi cung cấp đáp án chi tiết và lời giải bài tập một cách nhanh chóng, chính xác, giúp các em hiểu rõ kiến thức và tự tin hơn trong quá trình học tập.

\(\lim \frac{{3{n^2} + 2n}}{{2 - {n^2}}}\) bằng A. \(\frac{3}{2}\). B. \( - 2\). C. 3. D. \( - 3\).

Câu 1

    \(\lim \frac{{3{n^2} + 2n}}{{2 - {n^2}}}\) bằng

    A. \(\frac{3}{2}\).

    B. \( - 2\).

    C. 3.

    D. \( - 3\).

    Phương pháp giải:

    + Sử dụng kiến thức về các phép toán về giới hạn hữu hạn của dãy số để tính: Cho \(\lim {u_n} = a,\lim {v_n} = b\) và c là hằng số: \(\lim \left( {{u_n} \pm {v_n}} \right) = a \pm b\), \(\lim \frac{{{u_n}}}{{{v_n}}} = \frac{a}{b}\left( {b \ne 0} \right)\).

    + Sử dụng kiến thức về giới hạn hữu hạn của dãy số để tính: \(\lim \frac{c}{{{n^k}}} = 0\) với k là số nguyên dương, \(\lim c = c\) (c là hằng số)

    Lời giải chi tiết:

    \(\lim \frac{{3{n^2} + 2n}}{{2 - {n^2}}} = \lim \frac{{3 + \frac{2}{n}}}{{\frac{2}{{{n^2}}} - 1}} = \frac{{3 + \lim \frac{2}{n}}}{{\lim \frac{2}{{{n^2}}} - 1}} = \frac{3}{{ - 1}} = - 3\)

    Chọn D

    Câu 2

      \(\lim \frac{{\sqrt {4{n^2} + 4n + 1} }}{{4n + 1}}\) bằng

      A. \(\frac{1}{2}\).

      B. 1.

      C. 2.

      D. \( + \infty \).

      Phương pháp giải:

      + Sử dụng kiến thức về các phép toán về giới hạn hữu hạn của dãy số để tính: Cho \(\lim {u_n} = a,\lim {v_n} = b\) và c là hằng số: \(\lim \left( {{u_n} \pm {v_n}} \right) = a \pm b\), \(\lim \frac{{{u_n}}}{{{v_n}}} = \frac{a}{b}\left( {b \ne 0} \right)\), nếu \({u_n} \ge 0\;\forall n \in \mathbb{N}*\) thì \(a \ge 0\) và \(\lim \sqrt {{u_n}} = \sqrt a \)

      + Sử dụng kiến thức về giới hạn hữu hạn của dãy số để tính: \(\lim \frac{c}{{{n^k}}} = 0\) với k là số nguyên dương, \(\lim c = c\) (c là hằng số) 

      Lời giải chi tiết:

      \(\lim \frac{{\sqrt {4{n^2} + 4n + 1} }}{{4n + 1}} = \lim \frac{{\sqrt {4 + \frac{4}{n} + \frac{1}{{{n^2}}}} }}{{4 + \frac{1}{n}}} = \frac{{\sqrt {4 + \lim \frac{4}{n} + \lim \frac{1}{{{n^2}}}} }}{{4 + \lim \frac{1}{n}}} = \frac{{\sqrt 4 }}{4} = \frac{1}{2}\)

      Chọn A.

      Câu 3

        \(\lim \frac{{2n + 1}}{{\sqrt {9{n^2} + 1} - n}}\) bằng

        A. \(\frac{2}{3}\).

        B. 1.

        C. \(\frac{1}{4}\).

        D. 2.

        \(\lim \frac{{2n + 1}}{{\sqrt {9{n^2} + 1} - n}}\) bằng

        A. \(\frac{2}{3}\).

        B. 1.

        C. \(\frac{1}{4}\).

        D. 2.

        Phương pháp giải:

        + Sử dụng kiến thức về các phép toán về giới hạn hữu hạn của dãy số để tính: Cho \(\lim {u_n} = a,\lim {v_n} = b\) và c là hằng số: \(\lim \left( {{u_n} \pm {v_n}} \right) = a \pm b\), \(\lim \frac{{{u_n}}}{{{v_n}}} = \frac{a}{b}\left( {b \ne 0} \right)\), nếu \({u_n} \ge 0\;\forall n \in \mathbb{N}*\) thì \(a \ge 0\) và \(\lim \sqrt {{u_n}} = \sqrt a \)

        + Sử dụng kiến thức về giới hạn hữu hạn của dãy số để tính: \(\lim \frac{c}{{{n^k}}} = 0\) với k là số nguyên dương, \(\lim c = c\) (c là hằng số) 

        Lời giải chi tiết:

        \(\lim \frac{{2n + 1}}{{\sqrt {9{n^2} + 1} - n}} = \lim \frac{{2 + \frac{1}{n}}}{{\sqrt {9 + \frac{1}{{{n^2}}}} - 1}} = \frac{{2 + \lim \frac{1}{n}}}{{\sqrt {9 + \lim \frac{1}{{{n^2}}}} - 1}} = \frac{2}{{\sqrt 9 - 1}} = 1\)

        Chọn B

        Câu 4

          Cho hai dãy số \(\left( {{u_n}} \right)\) và \[\left( {{v_n}} \right)\] thỏa mãn \(\lim {u_n} = 4,\lim \left( {{v_n} - 3} \right) = 0\). \(\lim \left[ {{u_n}\left( {{u_n} - {v_n}} \right)} \right]\) bằng

          A. 7.

          B. 12.

          C. 4.

          D. 28.

          Phương pháp giải:

          + Sử dụng kiến thức về các phép toán về giới hạn hữu hạn của dãy số để tính: Cho \(\lim {u_n} = a,\lim {v_n} = b\) và c là hằng số: \(\lim \left( {{u_n} \pm {v_n}} \right) = a \pm b\), \(\lim \left( {{u_n}.{v_n}} \right) = a.b\).

          + Sử dụng kiến thức về giới hạn hữu hạn của dãy số để tính: \(\lim c = c\) (c là hằng số) 

          Lời giải chi tiết:

          \(\lim \left( {{v_n} - 3} \right) = 0 \Rightarrow \lim {v_n} - 3 = 0 \Rightarrow \lim {v_n} = 3\)

          \(\lim \left[ {{u_n}\left( {{u_n} - {v_n}} \right)} \right] = \lim \left( {u_n^2 - {u_n}{v_n}} \right) = \lim u_n^2 - \lim \left( {{u_n}{v_n}} \right) = {4^2} - 3.4 = 4\)

          Chọn C

          Câu 5

            \(\lim \frac{{{4^n}}}{{{{2.4}^n} + {3^n}}}\) bằng

            A. \(\frac{1}{2}\).

            B. 1.

            C. 4.

            D. 0.

            Phương pháp giải:

            + Sử dụng kiến thức về các phép toán về giới hạn hữu hạn của dãy số để tính: Cho \(\lim {u_n} = a,\lim {v_n} = b\) và c là hằng số: \(\lim \left( {{u_n} \pm {v_n}} \right) = a \pm b\), \(\lim \frac{{{u_n}}}{{{v_n}}} = \frac{a}{b}\left( {b \ne 0} \right)\).

            + Sử dụng kiến thức về giới hạn hữu hạn của dãy số để tính: \(\lim \frac{c}{{{n^k}}} = 0\) với k là số nguyên dương, \(\lim c = c\) (c là hằng số) 

            Lời giải chi tiết:

            \(\lim \frac{{{4^n}}}{{{{2.4}^n} + {3^n}}} = \lim \frac{1}{{2 + {{\left( {\frac{3}{4}} \right)}^n}}} = \frac{1}{{2 + \lim {{\left( {\frac{3}{4}} \right)}^n}}} = \frac{1}{2}\)

            Chọn A

            Câu 6

              \(\mathop {\lim }\limits_{x \to 2} \frac{{{x^2} - x - 2}}{{2x - 4}}\) bằng

              A. \(\frac{3}{2}\).

              B. \(\frac{1}{2}\).

              C. 1.

              D. \( - \frac{1}{2}\).

              Phương pháp giải:

              + Sử dụng kiến thức về các phép toán về giới hạn hữu hạn của hàm số để tính: Cho \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = L,\mathop {\lim }\limits_{x \to {x_0}} g\left( x \right) = M\): \(\mathop {\lim }\limits_{x \to {x_0}} \left[ {f\left( x \right) \pm g\left( x \right)} \right] = L \pm M\), \(\mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right)}}{{g\left( x \right)}} = \frac{L}{M}\) (với \(M \ne 0\))

              + Sử dụng kiến thức về giới hạn hữu hạn cơ bản để tính: \(\mathop {\lim }\limits_{x \to {x_0}} c = c\) (với c là hằng số) 

              Lời giải chi tiết:

              \(\mathop {\lim }\limits_{x \to 2} \frac{{{x^2} - x - 2}}{{2x - 4}} = \mathop {\lim }\limits_{x \to 2} \frac{{\left( {x - 2} \right)\left( {x + 1} \right)}}{{2\left( {x - 2} \right)}} = \mathop {\lim }\limits_{x \to 2} \frac{{x + 1}}{2} = \frac{{2 + 1}}{2} = \frac{3}{2}\)

              Chọn A

              Câu 7

                \(\mathop {\lim }\limits_{x \to 1} \frac{{2x - 2}}{{\sqrt {x + 3} - 2}}\) bằng

                A. 0.

                B. \( + \infty \).

                C. 2.

                D. 8.

                Phương pháp giải:

                + Sử dụng kiến thức về các phép toán về giới hạn hữu hạn của hàm số để tính: Cho \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = L,\mathop {\lim }\limits_{x \to {x_0}} g\left( x \right) = M\), khi đó: \(\mathop {\lim }\limits_{x \to {x_0}} \left[ {f\left( x \right) \pm g\left( x \right)} \right] = L \pm M\)

                + Nếu \(f\left( x \right) \ge 0\) thì \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = L\) thì \(L \ge 0\) và \(\mathop {\lim }\limits_{x \to {x_0}} \sqrt {f\left( x \right)} = \sqrt L \).

                + Sử dụng kiến thức về giới hạn hữu hạn cơ bản để tính: \(\mathop {\lim }\limits_{x \to {x_0}} c = c\) (với c là hằng số) 

                Lời giải chi tiết:

                \(\mathop {\lim }\limits_{x \to 1} \frac{{2x - 2}}{{\sqrt {x + 3} - 2}} = \mathop {\lim }\limits_{x \to 1} \frac{{2\left( {x - 1} \right)\left( {\sqrt {x + 3} + 2} \right)}}{{\left( {\sqrt {x + 3} - 2} \right)\left( {\sqrt {x + 3} + 2} \right)}} = \mathop {\lim }\limits_{x \to 1} \frac{{2\left( {x - 1} \right)\left( {\sqrt {x + 3} + 2} \right)}}{{x - 1}}\)

                \( = \mathop {\lim }\limits_{x \to 1} 2\left( {\sqrt {x + 3} + 2} \right) = 2\left( {\sqrt {1 + 3} + 2} \right) = 8\)

                Chọn D

                Câu 8

                  Biết \(\mathop {\lim }\limits_{x \to 1} \frac{{{x^2} - 3x + a}}{{x - 1}} = b\) với a và b là hai số thực. Giá trị của \(a + b\) bằng

                  A. 1.

                  B. 2.

                  C. 4.

                  D. 5.

                  Phương pháp giải:

                  Sử dụng kiến thức về giới hạn hữu hạn của hàm số để tìm a, b.

                  Lời giải chi tiết:

                  Do \(\mathop {\lim }\limits_{x \to 1} \left( {x - 1} \right) = 0\) nên để tồn tại giới hạn hữu hạn \(\mathop {\lim }\limits_{x \to 1} \frac{{{x^2} - 3x + a}}{{x - 1}} = b\) thì \(\mathop {\lim }\limits_{x \to 1} \left( {{x^2} - 3x + a} \right) = 0\) hay \(1 - 3 + a = 0 \Rightarrow a = 2\)

                  Do đó, \(\mathop {\lim }\limits_{x \to 1} \frac{{{x^2} - 3x + 2}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} \frac{{\left( {x - 1} \right)\left( {x - 2} \right)}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} \left( {x - 2} \right) = 1 - 2 = - 1\) nên \(b = - 1\).

                  Suy ra: \(a + b = 2 - 1 = 1\)

                  Chọn A

                  Câu 9

                    Cho hàm số \(f\left( x \right) = \frac{{{x^2} - 3x}}{{\left| {x - 3} \right|}}\). Đặt \(a = \mathop {\lim }\limits_{x \to {3^ + }} f\left( x \right)\) và \(b = \mathop {\lim }\limits_{x \to 3} f\left( x \right)\). Giá trị của \(a - 2b\) bằng

                    A. 0.

                    B. 9.

                    C. \( - 3\).

                    D. \( - 9\).

                    Phương pháp giải:

                    + Sử dụng kiến thức về các phép toán về giới hạn hữu hạn của hàm số để tính: Cho \(\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = L,\mathop {\lim }\limits_{x \to x_0^ + } g\left( x \right) = M\): \(\mathop {\lim }\limits_{x \to x_0^ + } \left[ {f\left( x \right) \pm g\left( x \right)} \right] = L \pm M\), \(\mathop {\lim }\limits_{x \to x_0^ + } \frac{{f\left( x \right)}}{{g\left( x \right)}} = \frac{L}{M}\) (với \(M \ne 0\))

                    Cho \(\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) = L,\mathop {\lim }\limits_{x \to x_0^ - } g\left( x \right) = M\): \(\mathop {\lim }\limits_{x \to x_0^ - } \left[ {f\left( x \right) \pm g\left( x \right)} \right] = L \pm M\), \(\mathop {\lim }\limits_{x \to x_0^ - } \frac{{f\left( x \right)}}{{g\left( x \right)}} = \frac{L}{M}\) (với \(M \ne 0\))

                    + Sử dụng kiến thức về giới hạn hữu hạn cơ bản để tính: \(\mathop {\lim }\limits_{x \to x_0^ + } c = c,\mathop {\lim }\limits_{x \to x_0^ - } c = c\) (với c là hằng số)

                    Lời giải chi tiết:

                    \(\mathop {\lim }\limits_{x \to {3^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {3^ + }} \frac{{{x^2} - 3x}}{{\left| {x - 3} \right|}} = \mathop {\lim }\limits_{x \to {3^ + }} \frac{{x\left( {x - 3} \right)}}{{x - 3}} = \mathop {\lim }\limits_{x \to {3^ + }} x = 3\) nên \(a = 3\)

                    \(\mathop {\lim }\limits_{x \to {3^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {3^ - }} \frac{{{x^2} - 3x}}{{\left| {x - 3} \right|}} = \mathop {\lim }\limits_{x \to {3^ - }} \frac{{x\left( {x - 3} \right)}}{{ - x + 3}} = \mathop {\lim }\limits_{x \to {3^ - }} \left( { - x} \right) = - 3\) nên \(b = - 3\)

                    Do đó, \(a - 2b = 3 - 2\left( { - 3} \right) = 9\)

                    Chọn B

                    Câu 10

                      Biết rằng \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = 2,\mathop {\lim }\limits_{x \to + \infty } \left( {f\left( x \right) + 2g\left( x \right)} \right) = 4\). Giới hạn \(\mathop {\lim }\limits_{x \to + \infty } \frac{{f\left( x \right) - 2g\left( x \right)}}{{f\left( x \right) + 2g\left( x \right)}}\) bằng

                      A. \( - 1\).

                      B. 0.

                      C. \(\frac{1}{2}\).

                      D. \( - \frac{1}{2}\).

                      Phương pháp giải:

                      + Sử dụng kiến thức về các phép toán về giới của hàm số tại vô cực để tính: Cho \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = L,\mathop {\lim }\limits_{x \to + \infty } g\left( x \right) = M\): \(\mathop {\lim }\limits_{x \to + \infty } \left[ {f\left( x \right) \pm g\left( x \right)} \right] = L \pm M\), \(\mathop {\lim }\limits_{x \to + \infty } \left[ {f\left( x \right).g\left( x \right)} \right] = L.M\), \(\mathop {\lim }\limits_{x \to + \infty } \frac{{f\left( x \right)}}{{g\left( x \right)}} = \frac{L}{M}\) (với \(M \ne 0\)).

                      + Sử dụng kiến thức về giới hạn hữu hạn cơ bản để tính: \(\mathop {\lim }\limits_{x \to + \infty } c = c\) (với c là hằng số)

                      Lời giải chi tiết:

                      Ta có: \(\mathop {\lim }\limits_{x \to + \infty } \left( {f\left( x \right) + 2g\left( x \right)} \right) = 4 \Rightarrow \mathop {\lim }\limits_{x \to + \infty } f\left( x \right) + 2\mathop {\lim }\limits_{x \to + \infty } g\left( x \right) = 4 \Rightarrow \mathop {\lim }\limits_{x \to + \infty } g\left( x \right) = \frac{{4 - 2}}{2} = 1\)

                      Do đó, \(\mathop {\lim }\limits_{x \to + \infty } \frac{{f\left( x \right) - 2g\left( x \right)}}{{f\left( x \right) + 2g\left( x \right)}} = \frac{{\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) - 2\mathop {\lim }\limits_{x \to + \infty } g\left( x \right)}}{{\mathop {\lim }\limits_{x \to + \infty } \left[ {f\left( x \right) + 2g\left( x \right)} \right]}} = \frac{{2 - 2.1}}{4} = 0\)

                      Chọn B

                      Câu 11

                        Biết rằng \(\mathop {\lim }\limits_{x \to + \infty } \frac{{2ax}}{{\sqrt {{x^2} + ax} + x}} = 3\). Giá trị của a là

                        A. \(\frac{3}{4}\).

                        B. 6.

                        C. \(\frac{3}{2}\).

                        D. 3.

                        Phương pháp giải:

                        + Sử dụng kiến thức về các phép toán về giới của hàm số tại vô cực để tính: Cho \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = L,\mathop {\lim }\limits_{x \to + \infty } g\left( x \right) = M\): \(\mathop {\lim }\limits_{x \to + \infty } \left[ {f\left( x \right) \pm g\left( x \right)} \right] = L \pm M\), \(\mathop {\lim }\limits_{x \to + \infty } \frac{{f\left( x \right)}}{{g\left( x \right)}} = \frac{L}{M}\) với \(M \ne 0\), nếu \(f\left( x \right) \ge 0\) thì \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = L\) thì \(L \ge 0\) và \(\mathop {\lim }\limits_{x \to + \infty } \sqrt {f\left( x \right)} = \sqrt L \).

                        + Sử dụng kiến thức về giới hạn hữu hạn cơ bản để tính: \(\mathop {\lim }\limits_{x \to + \infty } c = c\) (với c là hằng số)

                        Lời giải chi tiết:

                        Ta có: \(\mathop {\lim }\limits_{x \to + \infty } \frac{{2ax}}{{\sqrt {{x^2} + ax} + x}} = \mathop {\lim }\limits_{x \to + \infty } \frac{{2a}}{{\sqrt {1 + \frac{a}{x}} + 1}} = \frac{{2a}}{2} = a\)

                        Mà \(\mathop {\lim }\limits_{x \to + \infty } \frac{{2ax}}{{\sqrt {{x^2} + ax} + x}} = 3\) nên \(a = 3\)

                        Chọn D

                        Câu 12

                          \(\mathop {\lim }\limits_{x \to - {2^ - }} \frac{{1 - 3x}}{{x + 2}}\) bằng

                          A. \( + \infty \).

                          B. \( - \infty \).

                          C. \( - 3\).

                          D. \(\frac{7}{4}\).

                          Phương pháp giải:

                          Sử dụng kiến thức về giới hạn một bên của hàm số để tính: Nếu \(\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) = L > 0\) và \(\mathop {\lim }\limits_{x \to x_0^ - } g\left( x \right) = - \infty \) thì \(\mathop {\lim }\limits_{x \to x_0^ - } \left[ {f\left( x \right).g\left( x \right)} \right] = - \infty \).

                          Lời giải chi tiết:

                          Ta có: \(\mathop {\lim }\limits_{x \to - {2^ - }} \frac{1}{{x + 2}} = - \infty ,\mathop {\lim }\limits_{x \to - {2^ - }} \left( {1 - 3x} \right) = 1 - 3.\left( { - 2} \right) = 7 > 0\)

                          Do đó, \(\mathop {\lim }\limits_{x \to {2^ - }} \frac{{1 - 3x}}{{x + 2}} = \mathop {\lim }\limits_{x \to {2^ - }} \left[ {\left( {1 - 3x} \right)\frac{1}{{x + 2}}} \right] = - \infty \)

                          Chọn B

                          Câu 13

                            Biết rằng hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\frac{{2 - \sqrt {x + 1} }}{{x - 3}}\;\;khi\;x \ne 3\\\;\;\;\;\;\;\;a\;\;\;\;\;\;\;\;\,khi\;x = 3\end{array} \right.\) liên tục tại điểm \(x = 3\). Giá trị của a bằng

                            A. \( - \frac{1}{4}\).

                            B. \(\frac{1}{4}\).

                            C. \( - 2\).

                            D. 3.

                            Phương pháp giải:

                            Sử dụng kiến thức về định nghĩa hàm số liên tục tại một điểm để tìm a: Cho hàm số \(y = f\left( x \right)\) xác định trên khoảng K và \({x_0} \in K\). Hàm số \(y = f\left( x \right)\) được gọi là liên tục tại điểm \({x_0}\) nếu \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = f\left( {{x_0}} \right)\). 

                            Lời giải chi tiết:

                            Hàm số f(x) có tập xác định \(D = \left[ { - 1;3} \right) \cup \left( {3; + \infty } \right)\) chứa điểm 3.

                            Ta có: \(\mathop {\lim }\limits_{x \to 3} f\left( x \right) = \mathop {\lim }\limits_{x \to 3} \frac{{2 - \sqrt {x + 1} }}{{x - 3}} = \mathop {\lim }\limits_{x \to 3} \frac{{\left( {2 - \sqrt {x + 1} } \right)\left( {2 + \sqrt {x + 1} } \right)}}{{\left( {x - 3} \right)\left( {2 + \sqrt {x + 1} } \right)}}\)

                            \( = \mathop {\lim }\limits_{x \to 3} \frac{{3 - x}}{{\left( {x - 3} \right)\left( {2 + \sqrt {x + 1} } \right)}} = \mathop {\lim }\limits_{x \to 3} \frac{{ - 1}}{{2 + \sqrt {x + 1} }} = \frac{{ - 1}}{{2 + \sqrt {3 + 1} }} = \frac{{ - 1}}{4}\)

                            Để f(x) liên tục tại \(x = 3\) thì \(\mathop {\lim }\limits_{x \to 3} f\left( x \right) = f\left( 3 \right) \Rightarrow a = \frac{{ - 1}}{4}\)

                            Chọn A

                            Câu 14

                              Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\tan x\;\;\;\;\;\;\,khi\;0 < x \le \frac{\pi }{4}\\k - \cot x\;\,khi\;\frac{\pi }{4} < x \le \frac{\pi }{2}\end{array} \right.\) liên tục tại trên đoạn \(\left[ {0;\frac{\pi }{2}} \right]\). Giá trị của k bằng

                              A. 0.

                              B. 1.

                              C. 2.

                              D. \(\frac{\pi }{2}\).

                              Phương pháp giải:

                              + Sử dung kiến thức về hàm số liên tục trên một đoạn để tìm k: Cho hàm số \(y = f\left( x \right)\) xác định trên đoạn \(\left[ {a;b} \right]\). Hàm số \(y = f\left( x \right)\) liên tục trên đoạn \(\left[ {a;b} \right]\) nếu f(x) liên tục trên khoảng (a; b) và \(\mathop {\lim }\limits_{x \to {a^ + }} f\left( x \right) = f\left( a \right),\mathop {\lim }\limits_{x \to {b^ - }} f\left( x \right) = f\left( b \right)\).

                              + Sử dụng kiến thức về định nghĩa hàm số liên tục tại một điểm để tìm k: Cho hàm số \(y = f\left( x \right)\) xác định trên khoảng K và \({x_0} \in K\). Hàm số \(y = f\left( x \right)\) được gọi là liên tục tại điểm \({x_0}\) nếu \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = f\left( {{x_0}} \right)\).

                              Lời giải chi tiết:

                              Để hàm số f(x) liên tục trên đoạn \(\left[ {0;\frac{\pi }{2}} \right]\) thì hàm số f(x) liên tục tại \(x = \frac{\pi }{4}\), \(x = 0\) và \(x = \frac{\pi }{2}\).

                              Hàm số f(x) liên tục tại \(x = \frac{\pi }{4}\) khi \(\mathop {\lim }\limits_{x \to {{\left( {\frac{\pi }{4}} \right)}^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {{\left( {\frac{\pi }{4}} \right)}^ - }} f\left( x \right) = f\left( {\frac{\pi }{4}} \right)\)

                              \( \Leftrightarrow \mathop {\lim }\limits_{x \to {{\left( {\frac{\pi }{4}} \right)}^ - }} \left( {\tan x} \right) = \mathop {\lim }\limits_{x \to {{\left( {\frac{\pi }{4}} \right)}^ + }} \left( {k - \cot x} \right) = \tan \frac{\pi }{4}\)

                              \( \Leftrightarrow \tan \frac{\pi }{4} = k - \cot \frac{\pi }{4} \Leftrightarrow k - 1 = 1 \Leftrightarrow k = 2\)

                              Hàm số f(x) liên tục tại \(x = 0\) khi \(\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = f\left( 0 \right) \Leftrightarrow \tan 0 = \tan 0\) (luôn đúng)

                              Hàm số f(x) liên tục tại \(x = \frac{\pi }{2}\) khi \(\mathop {\lim }\limits_{x \to {{\left( {\frac{\pi }{2}} \right)}^ - }} f\left( x \right) = f\left( {\frac{\pi }{2}} \right) \Leftrightarrow \mathop {\lim }\limits_{x \to {{\left( {\frac{\pi }{2}} \right)}^ - }} \left( {k - \cot \frac{\pi }{2}} \right) = k - \cot \frac{\pi }{2}\) \( \Leftrightarrow k - \cot \frac{\pi }{2} = k - \cot \frac{\pi }{2}\) (luôn đúng)

                              Vậy \(k = 2\).

                              Chọn C

                              Câu 15

                                Biết rằng phương trình \({x^3} - 2x - 3 = 0\) chỉ có một nghiệm. Phương trình này có nghiệm trong khoảng nào sau đây?

                                A. \(\left( { - 1;0} \right)\).

                                B. \(\left( {0;1} \right)\).

                                C. \(\left( {1;2} \right)\).

                                D. \(\left( {2;3} \right)\).

                                Phương pháp giải:

                                Sử dụng kiến thức về ứng dụng tính liên tục của hàm số vào xét sự tồn tại nghiệm của phương trình để chứng minh: Nếu hàm số \(y = f\left( x \right)\) liên tục trên đoạn \(\left[ {a;b} \right]\) và \(f\left( a \right).f\left( b \right) < 0\) thì luôn tồn tại ít nhất một điểm \(c \in \left( {a;b} \right)\) sao cho \(f\left( c \right) = 0\). 

                                Lời giải chi tiết:

                                Xét hàm số \(f\left( x \right) = {x^3} - 2x - 3\), f(x) liên tục trên \(\mathbb{R}\).

                                Ta có: \(f\left( 1 \right) = {1^3} - 2.1 - 3 = 1 - 2 - 3 = - 4\), \(f\left( 2 \right) = {2^3} - 2.2 - 3 = 8 - 4 - 3 = 1\)

                                Vì \(f\left( 1 \right).f\left( 2 \right) < 0\) nên phương trình \(f\left( x \right) = 0\) có ít nghiệm một nghiệm trong khoảng \(\left( {1;2} \right)\).

                                Chọn C

                                Giải Trắc Nghiệm Toán 11 Chân Trời Sáng Tạo Tập 1 - Trang 91, 92, 93: Hướng Dẫn Chi Tiết

                                Chào mừng các em học sinh đến với bài viết hướng dẫn giải chi tiết các câu hỏi trắc nghiệm Toán 11 Chân Trời Sáng Tạo tập 1 trang 91, 92, 93. Bài viết này được thiết kế để giúp các em nắm vững kiến thức, rèn luyện kỹ năng giải bài tập và chuẩn bị tốt nhất cho các kỳ thi sắp tới.

                                I. Tổng Quan Về Chương Toán 11 Chân Trời Sáng Tạo Tập 1

                                Chương trình Toán 11 Chân Trời Sáng Tạo tập 1 tập trung vào các chủ đề quan trọng như:

                                • Hàm số lượng giác
                                • Phương trình lượng giác
                                • Đạo hàm
                                • Ứng dụng đạo hàm trong khảo sát hàm số

                                Các câu hỏi trắc nghiệm trang 91, 92, 93 thuộc chương trình này, đòi hỏi học sinh phải nắm vững các khái niệm, định lý và kỹ năng giải bài tập cơ bản.

                                II. Giải Chi Tiết Các Câu Hỏi Trắc Nghiệm

                                Dưới đây là giải chi tiết các câu hỏi trắc nghiệm trang 91, 92, 93 sách bài tập Toán 11 Chân Trời Sáng Tạo tập 1:

                                Câu 1: (Trang 91)

                                Đề bài: ... (Nội dung câu hỏi)

                                Đáp án: ...

                                Giải thích: ... (Giải thích chi tiết cách giải câu hỏi)

                                Câu 2: (Trang 91)

                                Đề bài: ... (Nội dung câu hỏi)

                                Đáp án: ...

                                Giải thích: ... (Giải thích chi tiết cách giải câu hỏi)

                                III. Mẹo Giải Bài Tập Trắc Nghiệm Toán 11 Hiệu Quả

                                Để giải bài tập trắc nghiệm Toán 11 hiệu quả, các em có thể tham khảo một số mẹo sau:

                                1. Đọc kỹ đề bài và xác định rõ yêu cầu của câu hỏi.
                                2. Phân tích các dữ kiện đã cho và tìm mối liên hệ giữa chúng.
                                3. Sử dụng các công thức, định lý và kỹ năng đã học để giải bài tập.
                                4. Kiểm tra lại đáp án trước khi nộp bài.

                                IV. Luyện Tập Thêm

                                Để củng cố kiến thức và rèn luyện kỹ năng giải bài tập, các em có thể tham khảo thêm các tài liệu sau:

                                • Sách giáo khoa Toán 11 Chân Trời Sáng Tạo tập 1
                                • Sách bài tập Toán 11 Chân Trời Sáng Tạo tập 1
                                • Các đề thi thử Toán 11
                                • Các bài giảng trực tuyến về Toán 11

                                V. Kết Luận

                                Hy vọng bài viết này đã cung cấp cho các em những kiến thức và kỹ năng cần thiết để giải các câu hỏi trắc nghiệm Toán 11 Chân Trời Sáng Tạo tập 1 trang 91, 92, 93 một cách hiệu quả. Chúc các em học tập tốt và đạt kết quả cao trong các kỳ thi sắp tới!

                                Nếu có bất kỳ thắc mắc nào, đừng ngần ngại liên hệ với tusach.vn để được hỗ trợ nhé!

                                Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

                                VỀ TUSACH.VN