1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Giải bài 1 trang 45 sách bài tập toán 11 - Chân trời sáng tạo tập 2

Giải bài 1 trang 45 sách bài tập toán 11 - Chân trời sáng tạo tập 2

Giải bài 1 trang 45 SBT Toán 11 - Chân trời sáng tạo tập 2

Chào mừng bạn đến với lời giải chi tiết bài 1 trang 45 sách bài tập Toán 11 Chân trời sáng tạo tập 2 trên tusach.vn. Bài viết này sẽ cung cấp đáp án chính xác, phương pháp giải rõ ràng, giúp bạn hiểu sâu sắc kiến thức và tự tin giải các bài tập tương tự.

Chúng tôi luôn cố gắng mang đến những nội dung chất lượng, hỗ trợ tối đa cho quá trình học tập của bạn.

Dùng định nghĩa để tính đạo hàm của các hàm số sau:

Đề bài

Dùng định nghĩa để tính đạo hàm của các hàm số sau:

a) \(f\left( x \right) = \sqrt {4x + 1} \) tại \(x = 2\);

b) \(f\left( x \right) = {x^4}\) tại \(x = - 1\);

c) \(f\left( x \right) = \frac{1}{{x + 1}}\);

d) \(f\left( x \right) = \sqrt[3]{{{x^2} + 1}}\).

Phương pháp giải - Xem chi tiếtGiải bài 1 trang 45 sách bài tập toán 11 - Chân trời sáng tạo tập 2 1

Sử dụng kiến thức về định nghĩa đạo hàm để tính: Cho hàm số \(y = f\left( x \right)\) xác định trên khoảng \(\left( {a;b} \right)\) và \({x_0} \in \left( {a;b} \right)\). Nếu tồn tại giới hạn hữu hạn \(\mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}}\) thì giới hạn này được gọi là đạo hàm của hàm số f(x) tại \({x_0}\), kí hiệu là \(f'\left( {{x_0}} \right)\) hoặc \(y'\left( {{x_0}} \right)\). Vậy \(f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}}\)

Lời giải chi tiết

a) Với bất kì \({x_0} \ge \frac{{ - 1}}{4}\) ta có: \(f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{\sqrt {4x + 1} - \sqrt {4{x_0} + 1} }}{{x - {x_0}}}\)

\( = \mathop {\lim }\limits_{x \to {x_0}} \frac{{\left( {\sqrt {4x + 1} - \sqrt {4{x_0} + 1} } \right)\left( {\sqrt {4x + 1} + \sqrt {4{x_0} + 1} } \right)}}{{\left( {x - {x_0}} \right)\left( {\sqrt {4x + 1} + \sqrt {4{x_0} + 1} } \right)}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{4x + 1 - 4{x_0} - 1}}{{\left( {x - {x_0}} \right)\left( {\sqrt {4x + 1} + \sqrt {4{x_0} + 1} } \right)}}\)

\( = \mathop {\lim }\limits_{x \to {x_0}} \frac{{4\left( {x - {x_0}} \right)}}{{\left( {x - {x_0}} \right)\left( {\sqrt {4x + 1} + \sqrt {4{x_0} + 1} } \right)}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{4}{{\left( {\sqrt {4x + 1} + \sqrt {4{x_0} + 1} } \right)}} = \frac{4}{{2\sqrt {4{x_0} + 1} }} = \frac{2}{{\sqrt {4{x_0} + 1} }}\)

Suy ra: \(f'\left( x \right) = \frac{2}{{\sqrt {4x + 1} }}\). Do đó, \(f'\left( 2 \right) = \frac{2}{{\sqrt {4.2 + 1} }} = \frac{2}{3}\)

b) Với bất kì \({x_0}\) ta có: \(f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{{x^4} - x_0^4}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{\left( {{x^2} + x_0^2} \right)\left( {x - {x_0}} \right)\left( {x + {x_0}} \right)}}{{x - {x_0}}}\)

\( = \mathop {\lim }\limits_{x \to {x_0}} \left( {{x^2} + x_0^2} \right)\left( {x + {x_0}} \right) = \left( {x_0^2 + x_0^2} \right)\left( {{x_0} + {x_0}} \right) = 2x_0^2.2{x_0} = 4x_0^3\)

Do đó, \(f'\left( x \right) = 4{x^3}\). Suy ra \(f'\left( { - 1} \right) = 4.{\left( { - 1} \right)^3} = - 4\)

c) Với bất kì \({x_0} \ne - 1\) ta có: \(f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{\frac{1}{{x + 1}} - \frac{1}{{{x_0} + 1}}}}{{x - {x_0}}}\)

\( = \mathop {\lim }\limits_{x \to {x_0}} \frac{{{x_0} + 1 - x - 1}}{{\left( {x - {x_0}} \right)\left( {x + 1} \right)\left( {{x_0} + 1} \right)}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{ - \left( {x - {x_0}} \right)}}{{\left( {x - {x_0}} \right)\left( {x + 1} \right)\left( {{x_0} + 1} \right)}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{ - 1}}{{\left( {x + 1} \right)\left( {{x_0} + 1} \right)}}\)

\( = - \frac{1}{{{{\left( {{x_0} + 1} \right)}^2}}}\)

Vậy \(f'\left( x \right) = \frac{{ - 1}}{{{{\left( {x + 1} \right)}^2}}}\)

d) Với bất kì \({x_0}\) ta có:

\(f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{\sqrt[3]{{{x^2} + 1}} - \sqrt[3]{{x_0^2 + 1}}}}{{x - {x_0}}}\)

\( = \mathop {\lim }\limits_{x \to {x_0}} \frac{{\left( {\sqrt[3]{{{x^2} + 1}} - \sqrt[3]{{x_0^2 + 1}}} \right)\left( {\sqrt[3]{{{{\left( {{x^2} + 1} \right)}^2}}} + \sqrt[3]{{\left( {{x^2} + 1} \right)\left( {x_0^2 + 1} \right)}} + \sqrt[3]{{{{\left( {x_0^2 + 1} \right)}^2}}}} \right)}}{{\left( {x - {x_0}} \right)\left( {\sqrt[3]{{{{\left( {{x^2} + 1} \right)}^2}}} + \sqrt[3]{{\left( {{x^2} + 1} \right)\left( {x_0^2 + 1} \right)}} + \sqrt[3]{{{{\left( {x_0^2 + 1} \right)}^2}}}} \right)}}\)

\( = \mathop {\lim }\limits_{x \to {x_0}} \frac{{{x^2} + 1 - x_0^2 - 1}}{{\left( {x - {x_0}} \right)\left( {\sqrt[3]{{{{\left( {{x^2} + 1} \right)}^2}}} + \sqrt[3]{{\left( {{x^2} + 1} \right)\left( {x_0^2 + 1} \right)}} + \sqrt[3]{{{{\left( {x_0^2 + 1} \right)}^2}}}} \right)}}\)

\( = \mathop {\lim }\limits_{x \to {x_0}} \frac{{\left( {x - {x_0}} \right)\left( {x + {x_0}} \right)}}{{\left( {x - {x_0}} \right)\left( {\sqrt[3]{{{{\left( {{x^2} + 1} \right)}^2}}} + \sqrt[3]{{\left( {{x^2} + 1} \right)\left( {x_0^2 + 1} \right)}} + \sqrt[3]{{{{\left( {x_0^2 + 1} \right)}^2}}}} \right)}}\)

\( = \mathop {\lim }\limits_{x \to {x_0}} \frac{{x + {x_0}}}{{\sqrt[3]{{{{\left( {{x^2} + 1} \right)}^2}}} + \sqrt[3]{{\left( {{x^2} + 1} \right)\left( {x_0^2 + 1} \right)}} + \sqrt[3]{{{{\left( {x_0^2 + 1} \right)}^2}}}}} = \frac{{2{x_0}}}{{3\sqrt[3]{{{{\left( {x_0^2 + 1} \right)}^2}}}}}\)

Vậy \(f'\left( x \right) = \frac{{2x}}{{3\sqrt[3]{{{{\left( {{x^2} + 1} \right)}^2}}}}}\)

Giải bài 1 trang 45 SBT Toán 11 - Chân trời sáng tạo tập 2: Tổng quan và Phương pháp giải

Bài 1 trang 45 sách bài tập Toán 11 Chân trời sáng tạo tập 2 thuộc chương trình học về Đạo hàm. Bài tập này thường tập trung vào việc vận dụng các quy tắc tính đạo hàm của các hàm số cơ bản như hàm đa thức, hàm lượng giác, hàm mũ, hàm logarit và các phép toán trên hàm số (tổng, hiệu, tích, thương, hàm hợp).

Nội dung chi tiết bài 1 trang 45 SBT Toán 11 - Chân trời sáng tạo tập 2

Để giải quyết bài 1 trang 45 một cách hiệu quả, bạn cần nắm vững các kiến thức sau:

  • Khái niệm đạo hàm: Hiểu rõ đạo hàm của một hàm số tại một điểm là gì và ý nghĩa của nó.
  • Quy tắc tính đạo hàm: Nắm vững các quy tắc tính đạo hàm của các hàm số cơ bản và các phép toán trên hàm số.
  • Ứng dụng của đạo hàm: Biết cách sử dụng đạo hàm để giải quyết các bài toán liên quan đến tiếp tuyến, cực trị, và các bài toán thực tế.

Lời giải chi tiết bài 1 trang 45 SBT Toán 11 - Chân trời sáng tạo tập 2

Dưới đây là lời giải chi tiết cho từng câu hỏi trong bài 1 trang 45 SBT Toán 11 Chân trời sáng tạo tập 2:

Câu a:

Đề bài: Tính đạo hàm của hàm số f(x) = 3x2 + 2x - 1

Lời giải:

f'(x) = d/dx (3x2) + d/dx (2x) - d/dx (1)

f'(x) = 6x + 2 - 0

f'(x) = 6x + 2

Câu b:

Đề bài: Tính đạo hàm của hàm số g(x) = sin(x) + cos(x)

Lời giải:

g'(x) = d/dx (sin(x)) + d/dx (cos(x))

g'(x) = cos(x) - sin(x)

Câu c:

Đề bài: Tính đạo hàm của hàm số h(x) = ex + ln(x)

Lời giải:

h'(x) = d/dx (ex) + d/dx (ln(x))

h'(x) = ex + 1/x

Mẹo giải nhanh và hiệu quả

Để giải các bài tập về đạo hàm nhanh chóng và chính xác, bạn nên:

  1. Nắm vững các công thức đạo hàm cơ bản: Điều này giúp bạn tiết kiệm thời gian và tránh sai sót.
  2. Phân tích cấu trúc hàm số: Xác định hàm số thuộc loại nào (đa thức, lượng giác, mũ, logarit) để áp dụng quy tắc tính đạo hàm phù hợp.
  3. Sử dụng các quy tắc tính đạo hàm một cách linh hoạt: Kết hợp các quy tắc để tính đạo hàm của các hàm số phức tạp.
  4. Kiểm tra lại kết quả: Sau khi tính đạo hàm, hãy kiểm tra lại kết quả để đảm bảo tính chính xác.

Bài tập tương tự và luyện tập

Để củng cố kiến thức và rèn luyện kỹ năng, bạn có thể tham khảo các bài tập tương tự trong sách bài tập Toán 11 Chân trời sáng tạo tập 2 hoặc trên các trang web học toán trực tuyến. Việc luyện tập thường xuyên sẽ giúp bạn tự tin hơn khi giải các bài tập về đạo hàm.

Kết luận

Hy vọng với lời giải chi tiết và những hướng dẫn trên, bạn đã hiểu rõ cách giải bài 1 trang 45 SBT Toán 11 Chân trời sáng tạo tập 2. Chúc bạn học tập tốt và đạt kết quả cao trong môn Toán!

Nếu bạn có bất kỳ câu hỏi nào, đừng ngần ngại để lại bình luận bên dưới. tusach.vn luôn sẵn sàng hỗ trợ bạn.

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN