1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Giải bài 3 trang 31 sách bài tập toán 11 - Chân trời sáng tạo tập 1

Giải bài 3 trang 31 sách bài tập toán 11 - Chân trời sáng tạo tập 1

Giải bài 3 trang 31 SBT Toán 11 Chân trời sáng tạo tập 1

Chào mừng bạn đến với lời giải chi tiết bài 3 trang 31 sách bài tập Toán 11 Chân trời sáng tạo tập 1 trên tusach.vn. Bài viết này sẽ cung cấp đáp án chính xác, phương pháp giải rõ ràng, giúp bạn hiểu sâu sắc kiến thức và tự tin giải các bài tập tương tự.

Chúng tôi luôn cố gắng mang đến những nội dung chất lượng, hỗ trợ tối đa cho quá trình học tập của bạn.

Giải các phương trình lượng giác sau: a) \(\cos \left( {x + \frac{\pi }{4}} \right) + \cos \left( {\frac{\pi }{4} - x} \right) = 0\); b) \(2{\cos ^2}x + 5\sin x - 4 = 0\);

Đề bài

Giải các phương trình lượng giác sau:

a) \(\cos \left( {x + \frac{\pi }{4}} \right) + \cos \left( {\frac{\pi }{4} - x} \right) = 0\);

b) \(2{\cos ^2}x + 5\sin x - 4 = 0\);

c) \(\cos \left( {3x - \frac{\pi }{4}} \right) + 2{\sin ^2}x - 1 = 0\).

Phương pháp giải - Xem chi tiếtGiải bài 3 trang 31 sách bài tập toán 11 - Chân trời sáng tạo tập 1 1

Sử dụng kiến thức về phương trình lượng giác cơ bản để giải:

a, c) Phương trình \(\cos x = m\) có nghiệm khi \(\left| m \right| \le 1\). Khi đó, nghiệm của phương trình là \(x = \alpha + k2\pi \left( {k \in \mathbb{Z}} \right)\); \(x = - \alpha + k2\pi \left( {k \in \mathbb{Z}} \right)\) với \(\alpha \) là góc thuộc \(\left[ {0;\pi } \right]\) sao cho \(\cos \alpha = m\).

Đặc biệt: \(\cos u = \cos v \Leftrightarrow u = v + k2\pi \left( {k \in \mathbb{Z}} \right)\) hoặc \(u = - v + k2\pi \left( {k \in \mathbb{Z}} \right)\)

\(\cos u = \cos {a^0} \Leftrightarrow u = {a^0} + k{360^0}\left( {k \in \mathbb{Z}} \right)\) hoặc \(u = - {a^0} + k{360^0}\left( {k \in \mathbb{Z}} \right)\)

b) Phương trình \(\sin x = m\) có nghiệm khi \(\left| m \right| \le 1\). Khi đó, nghiệm của phương trình là \(x = \alpha + k2\pi \left( {k \in \mathbb{Z}} \right)\); \(x = \pi - \alpha + k2\pi \left( {k \in \mathbb{Z}} \right)\) với \(\alpha \) là góc thuộc \(\left[ { - \frac{\pi }{2};\frac{\pi }{2}} \right]\) sao cho \(\sin \alpha = m\).

Lời giải chi tiết

a) \(\cos \left( {x + \frac{\pi }{4}} \right) + \cos \left( {\frac{\pi }{4} - x} \right) = 0 \) \( \Leftrightarrow 2\cos \frac{\pi }{4}\cos x = 0 \) \( \Leftrightarrow \cos x = 0\)\( \Leftrightarrow x = \frac{\pi }{2} + k\pi \left( {k \in \mathbb{Z}} \right)\)

Vậy phương trình đã cho có nghiệm \(x = \frac{\pi }{2} + k\pi \left( {k \in \mathbb{Z}} \right)\)

b) \(2{\cos ^2}x + 5\sin x - 4 = 0 \) \( \Leftrightarrow 2\left( {1 - {{\sin }^2}x} \right) + 5\sin x - 4 = 0 \) \( \Leftrightarrow 2{\sin ^2}x - 5\sin x + 2 = 0\)

\( \Leftrightarrow \left( {2\sin x - 1} \right)\left( {\sin x - 2} \right) = 0 \) \( \Leftrightarrow 2\sin x - 1 = 0\) (do \(\sin x - 2 < 0\) với mọi số thực x)

\( \Leftrightarrow \sin x = \frac{1}{2} \) \( \Leftrightarrow \sin x = \sin \frac{\pi }{6} \) \( \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{6} + k2\pi \\x = \pi - \frac{\pi }{6} + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right) \) \( \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{6} + k2\pi \\x = \frac{{5\pi }}{6} + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\)

Vậy phương trình đã cho có nghiệm \(x = \frac{\pi }{6} + k2\pi \left( {k \in \mathbb{Z}} \right);x = \frac{{5\pi }}{6} + k2\pi \left( {k \in \mathbb{Z}} \right)\)

c) \(\cos \left( {3x - \frac{\pi }{4}} \right) + 2{\sin ^2}x - 1 = 0 \) \( \Leftrightarrow \cos \left( {3x - \frac{\pi }{4}} \right) - \cos 2x = 0 \) \( \Leftrightarrow \cos \left( {3x - \frac{\pi }{4}} \right) = \cos 2x\)

\( \Leftrightarrow \left[ \begin{array}{l}3x - \frac{\pi }{4} = 2x + k2\pi \\3x - \frac{\pi }{4} = - 2x + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right) \) \( \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{4} + k2\pi \\x = \frac{\pi }{{20}} + \frac{{k2\pi }}{5}\end{array} \right.\left( {k \in \mathbb{Z}} \right)\)

Vậy phương trình đã cho có nghiệm \(x = \frac{\pi }{4} + k2\pi \left( {k \in \mathbb{Z}} \right);x = \frac{\pi }{{20}} + \frac{{k2\pi }}{5}\left( {k \in \mathbb{Z}} \right)\)

Giải bài 3 trang 31 SBT Toán 11 Chân trời sáng tạo tập 1: Tổng quan và Phương pháp giải

Bài 3 trang 31 sách bài tập Toán 11 Chân trời sáng tạo tập 1 thuộc chương trình học về hàm số lượng giác. Bài tập này thường tập trung vào việc xác định tập xác định của hàm số lượng giác, tìm giá trị của hàm số tại một điểm cụ thể, và vẽ đồ thị hàm số. Để giải quyết bài tập này một cách hiệu quả, bạn cần nắm vững các kiến thức cơ bản về:

  • Định nghĩa hàm số lượng giác: Sin, Cosin, Tangent, Cotangent và các tính chất của chúng.
  • Tập xác định của hàm số lượng giác: Điều kiện để hàm số có nghĩa. Ví dụ, với hàm sin(x) và cos(x), tập xác định là R (tập hợp tất cả các số thực). Với hàm tan(x) và cot(x), tập xác định là các số thực khác các giá trị làm mẫu số bằng 0.
  • Các phép biến đổi lượng giác: Sử dụng các công thức lượng giác để đơn giản hóa biểu thức và tìm giá trị của hàm số.

Lời giải chi tiết bài 3 trang 31 SBT Toán 11 Chân trời sáng tạo tập 1

Để cung cấp lời giải chính xác, chúng ta cần xem xét từng câu hỏi cụ thể trong bài tập. Dưới đây là một ví dụ minh họa:

Ví dụ: Tìm tập xác định của hàm số y = tan(2x + π/3)

Để hàm số y = tan(2x + π/3) có nghĩa, điều kiện là:

2x + π/3 ≠ π/2 + kπ (với k là số nguyên)

Giải phương trình trên, ta được:

2x ≠ π/2 - π/3 + kπ

2x ≠ π/6 + kπ

x ≠ π/12 + kπ/2 (với k là số nguyên)

Vậy, tập xác định của hàm số y = tan(2x + π/3) là:

D = {x | x ≠ π/12 + kπ/2, k ∈ Z}

Mẹo giải bài tập hàm số lượng giác

Để giải các bài tập về hàm số lượng giác một cách nhanh chóng và chính xác, bạn có thể áp dụng một số mẹo sau:

  • Sử dụng máy tính bỏ túi: Máy tính bỏ túi có thể giúp bạn tính toán các giá trị lượng giác một cách dễ dàng.
  • Vẽ đồ thị hàm số: Vẽ đồ thị hàm số giúp bạn hình dung được tính chất của hàm số và tìm ra đáp án một cách trực quan.
  • Luyện tập thường xuyên: Luyện tập thường xuyên sẽ giúp bạn nắm vững kiến thức và kỹ năng giải bài tập.

Tài liệu tham khảo hữu ích

Ngoài sách giáo khoa và sách bài tập, bạn có thể tham khảo thêm các tài liệu sau để học tốt môn Toán 11:

  • Các trang web học Toán trực tuyến: Khan Academy, VietJack, Loigiaihay,...
  • Các video bài giảng Toán 11: YouTube, VTVcab,...
  • Các diễn đàn Toán học: MathScope, MathVN,...

Kết luận

Hy vọng rằng lời giải chi tiết bài 3 trang 31 SBT Toán 11 Chân trời sáng tạo tập 1 trên tusach.vn sẽ giúp bạn hiểu rõ hơn về kiến thức và kỹ năng giải bài tập hàm số lượng giác. Chúc bạn học tập tốt!

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN